Preservation theorems for finite support iterations

Diego A. Mejía diego.mejia@shizuoka.ac.jp

Shizuoka University

Set Theory of the Reals

Oaxaca, México August 5th, 2019

Additivity of \mathcal{I} . add $(\mathcal{I}) = \min\{|\mathcal{F}| : \mathcal{F} \subseteq \mathcal{I}, \bigcup \mathcal{F} \notin \mathcal{I}\}.$

Additivity of \mathcal{I} . add $(\mathcal{I}) = \min\{|\mathcal{F}| : \mathcal{F} \subseteq \mathcal{I}, \bigcup \mathcal{F} \notin \mathcal{I}\}.$ Covering of \mathcal{I} . cov $(\mathcal{I}) = \min\{|\mathcal{F}| : \mathcal{F} \subseteq \mathcal{I}, \bigcup \mathcal{F} = X\}.$

Additivity of \mathcal{I} . add $(\mathcal{I}) = \min\{|\mathcal{F}| : \mathcal{F} \subseteq \mathcal{I}, \bigcup \mathcal{F} \notin \mathcal{I}\}.$ Covering of \mathcal{I} . cov $(\mathcal{I}) = \min\{|\mathcal{F}| : \mathcal{F} \subseteq \mathcal{I}, \bigcup \mathcal{F} = X\}.$ Uniformity of \mathcal{I} . non $(\mathcal{I}) = \min\{|Z| : Z \subseteq X, Z \notin \mathcal{I}\}.$

Additivity of \mathcal{I} . $\operatorname{add}(\mathcal{I}) = \min\{|\mathcal{F}| : \mathcal{F} \subseteq \mathcal{I}, \bigcup \mathcal{F} \notin \mathcal{I}\}.$ Covering of \mathcal{I} . $\operatorname{cov}(\mathcal{I}) = \min\{|\mathcal{F}| : \mathcal{F} \subseteq \mathcal{I}, \bigcup \mathcal{F} = X\}.$ Uniformity of \mathcal{I} . $\operatorname{non}(\mathcal{I}) = \min\{|\mathcal{Z}| : \mathcal{Z} \subseteq X, \ \mathcal{Z} \notin \mathcal{I}\}.$ Cofinality of \mathcal{I} . $\operatorname{cof}(\mathcal{I}) = \min\{|\mathcal{F}| : \mathcal{F} \subseteq \mathcal{I}, \ (\forall A \in \mathcal{I})(\exists B \in \mathcal{F}) A \subseteq B.$

Additivity of \mathcal{I} . $\operatorname{add}(\mathcal{I}) = \min\{|\mathcal{F}| : \mathcal{F} \subseteq \mathcal{I}, \bigcup \mathcal{F} \notin \mathcal{I}\}.$ Covering of \mathcal{I} . $\operatorname{cov}(\mathcal{I}) = \min\{|\mathcal{F}| : \mathcal{F} \subseteq \mathcal{I}, \bigcup \mathcal{F} = X\}.$ Uniformity of \mathcal{I} . $\operatorname{non}(\mathcal{I}) = \min\{|\mathcal{Z}| : \mathcal{Z} \subseteq X, \ \mathcal{Z} \notin \mathcal{I}\}.$ Cofinality of \mathcal{I} . $\operatorname{cof}(\mathcal{I}) = \min\{|\mathcal{F}| : \mathcal{F} \subseteq \mathcal{I}, \ (\forall A \in \mathcal{I})(\exists B \in \mathcal{F}) A \subseteq B.$

 \mathcal{M} : the ideal of first category subsets of \mathbb{R} .

 \mathcal{N} : the ideal of Lebesgue measure zero subsets of \mathbb{R} .

For $f, g \in \omega^{\omega}$ denote $f \leq^* g$ (f is dominated by g) iff $(\exists m)(\forall n \geq m) f(n) \leq g(n)$.

For $f, g \in \omega^{\omega}$ denote $f \leq^* g$ (f is dominated by g) iff $(\exists m)(\forall n \geq m) f(n) \leq g(n)$. Consider

$$\begin{split} \mathfrak{b} &= \min\{|F| : F \subseteq \omega^{\omega} \text{ and } \neg(\exists g \in \omega^{\omega})(\forall f \in F) f \leq^* g\} \\ \mathfrak{d} &= \min\{|D| : D \subseteq \omega^{\omega} \text{ and } (\forall f \in \omega^{\omega})(\exists g \in D) f \leq^* g\} \\ \mathfrak{c} &= 2^{\aleph_0} \end{split}$$

Inequalities: Bartoszyński, Fremlin, Miller, Rothberger, Truss. Completeness: Bartoszyński, Judah, Miller, Shelah.

Also $\operatorname{add}(\mathcal{M}) = \min\{\mathfrak{b}, \operatorname{cov}(\mathcal{M})\}\ \text{and}\ \operatorname{cof}(\mathcal{M}) = \max\{\mathfrak{d}, \operatorname{non}(\mathcal{M})\}.$

Techniques to obtain models where many cardinal characteristics assume pairwise different values.

Techniques to obtain models where many cardinal characteristics assume pairwise different values.

Context

Finite support iteration of ccc posets $(non(\mathcal{M}) \leq cf(\mathsf{length}) \leq cov(\mathcal{M})).$

Techniques to obtain models where many cardinal characteristics assume pairwise different values.

Context

 ${\sf Finite \ support \ iteration \ of \ ccc \ posets \ } ({\rm non}(\mathcal{M}) \leq {\rm cf}({\sf length}) \leq {\rm cov}(\mathcal{M})).$

Playground

Cichoń's diagram (just the left side).

A relational system is a triplet $\mathbf{R} = \langle X, Y, R \rangle$ where $R \subseteq X \times Y$.

Image: Image:

- E - N

A relational system is a triplet $\mathbf{R} = \langle X, Y, R \rangle$ where $R \subseteq X \times Y$.

1 $B \subseteq X$ is **R**-bounded if $(\exists y \in Y)(\forall x \in B) xRy$.

A relational system is a triplet $\mathbf{R} = \langle X, Y, R \rangle$ where $R \subseteq X \times Y$.

- **●** $B \subseteq X$ is **R**-bounded if $(\exists y \in Y)(\forall x \in B) xRy$.
- **2** $D \subseteq Y$ is **R**-dominating if $(\forall x \in X)(\exists y \in D) xRy$.

A relational system is a triplet $\mathbf{R} = \langle X, Y, R \rangle$ where $R \subseteq X \times Y$.

- $B \subseteq X \text{ is } \mathbf{R}\text{-bounded if } (\exists y \in Y)(\forall x \in B) xRy.$
- **2** $D \subseteq Y$ is **R**-dominating if $(\forall x \in X)(\exists y \in D) xRy$.
- $(\mathbf{R}) := \min\{|F| : F \subseteq X \text{ is } \mathbf{R}\text{-unbounded}\}.$

A relational system is a triplet $\mathbf{R} = \langle X, Y, R \rangle$ where $R \subseteq X \times Y$.

- $B \subseteq X \text{ is } \mathbf{R}\text{-bounded if } (\exists y \in Y)(\forall x \in B) xRy.$
- **2** $D \subseteq Y$ is **R**-dominating if $(\forall x \in X)(\exists y \in D) xRy$.
- $(\mathbf{R}) := \min\{|F| : F \subseteq X \text{ is } \mathbf{R}\text{-unbounded}\}.$
- $\mathfrak{d}(\mathbf{R}) := \min\{|D| : D \subseteq Y \text{ is } \mathbf{R}\text{-dominating}\}.$

• Let
$$\langle S, \leq \rangle$$
 be a directed set.

∃ →

・ロト ・ 日 ・ ・ ヨ ・ ・

• Let $\langle S, \leq \rangle$ be a directed set. As a relational system, $S = \langle S, S, \leq \rangle$, $cp(S) := \mathfrak{b}(S)$, $cf(S) = \mathfrak{d}(S)$.

 Let (S, ≤) be a directed set. As a relational system, S = (S, S, ≤), cp(S) := b(S), cf(S) = ∂(S).
 Recall: If S has no maximum then cp(S) is regular and cp(S) ≤ cf(S).

→ ∃ →

- Let (S, ≤) be a directed set. As a relational system, S = (S, S, ≤), cp(S) := b(S), cf(S) = ∂(S).
 Recall: If S has no maximum then cp(S) is regular and cp(S) ≤ cf(S).
- **2** If *L* is a linear order without maximum then cp(L) = cf(L).

- Let (S,≤) be a directed set. As a relational system, S = (S, S, ≤), cp(S) := b(S), cf(S) = ∂(S).
 Recall: If S has no maximum then cp(S) is regular and cp(S) ≤ cf(S).
- **2** If *L* is a linear order without maximum then cp(L) = cf(L).
- $(\omega^{\omega}, \leq^*) \text{ is directed, } \mathfrak{b} = \mathfrak{b}(\omega^{\omega}), \ \mathfrak{d} = \mathfrak{d}(\omega^{\omega}).$

- Let (S,≤) be a directed set. As a relational system, S = (S, S, ≤), cp(S) := b(S), cf(S) = ∂(S).
 Recall: If S has no maximum then cp(S) is regular and cp(S) ≤ cf(S).
- **2** If *L* is a linear order without maximum then cp(L) = cf(L).
- $(\omega^{\omega}, \leq^*) \text{ is directed, } \mathfrak{b} = \mathfrak{b}(\omega^{\omega}), \ \mathfrak{d} = \mathfrak{d}(\omega^{\omega}).$
- $\mathbf{Id} := \langle \omega^{\omega}, \omega^{\omega}, = \rangle$, $\mathfrak{b}(\mathbf{Id}) = 2$, $\mathfrak{d}(\mathbf{Id}) = \mathfrak{c}$.

• • = • • = •

- Let (S,≤) be a directed set. As a relational system, S = (S, S, ≤), cp(S) := b(S), cf(S) = ∂(S).
 Recall: If S has no maximum then cp(S) is regular and cp(S) ≤ cf(S).
- **2** If *L* is a linear order without maximum then cp(L) = cf(L).

•
$$\mathbf{Id} := \langle \omega^{\omega}, \omega^{\omega}, = \rangle, \ \mathfrak{b}(\mathbf{Id}) = 2, \ \mathfrak{d}(\mathbf{Id}) = \mathfrak{c}.$$

Fix an ideal \mathcal{I} on a set X.

$$(\mathfrak{I}, \subseteq) \text{ is directed, } \mathfrak{b}(\mathcal{I}) = \mathrm{add}(\mathcal{I}), \ \mathfrak{d}(\mathcal{I}) = \mathrm{cof}(\mathcal{I}).$$

- Let (S,≤) be a directed set. As a relational system, S = (S,S,≤), cp(S) := b(S), cf(S) = ∂(S).
 Recall: If S has no maximum then cp(S) is regular and cp(S) ≤ cf(S).
- **2** If *L* is a linear order without maximum then cp(L) = cf(L).

$$(\omega^{\omega}, \leq^*) \text{ is directed, } \mathfrak{b} = \mathfrak{b}(\omega^{\omega}), \ \mathfrak{d} = \mathfrak{d}(\omega^{\omega}).$$

Fix an ideal \mathcal{I} on a set X.

If $\mathbf{R} = \langle X, Y, R \rangle$, denote $\mathbf{R}^{\perp} = \langle Y, X, R^{\perp} \rangle$ where

 $yR^{\perp}x$ iff $\neg(xRy)$.

If
$$\mathbf{R} = \langle X, Y, R \rangle$$
, denote $\mathbf{R}^{\perp} = \langle Y, X, R^{\perp} \rangle$ where
 $yR^{\perp}x$ iff $\neg(xRy)$.

Note that $\mathfrak{b}(\mathbf{R}^{\perp}) = \mathfrak{d}(\mathbf{R})$ and $\mathfrak{d}(\mathbf{R}^{\perp}) = \mathfrak{b}(\mathbf{R})$.

If
$$\mathbf{R} = \langle X, Y, R \rangle$$
, denote $\mathbf{R}^{\perp} = \langle Y, X, \mathbf{R}^{\perp} \rangle$ where
 $y R^{\perp} x$ iff $\neg (x R y)$.

Note that $\mathfrak{b}(\mathbf{R}^{\perp}) = \mathfrak{d}(\mathbf{R})$ and $\mathfrak{d}(\mathbf{R}^{\perp}) = \mathfrak{b}(\mathbf{R})$.

Let $\mathbf{R}' = \langle X', Y', R' \rangle$. A pair $(F, G) : \mathbf{R} \to \mathbf{R}'$ is a *Tukey connection* if

 $F: X \to X', \quad G: Y' \to Y, \quad (\forall x \in X)(\forall y' \in Y') F(x)R'y' \Rightarrow xRG(y).$

If
$$\mathbf{R} = \langle X, Y, R \rangle$$
, denote $\mathbf{R}^{\perp} = \langle Y, X, R^{\perp} \rangle$ where
 $yR^{\perp}x$ iff $\neg(xRy)$.

Note that $\mathfrak{b}(\mathbf{R}^{\perp}) = \mathfrak{d}(\mathbf{R})$ and $\mathfrak{d}(\mathbf{R}^{\perp}) = \mathfrak{b}(\mathbf{R})$.

Let $\mathbf{R}' = \langle X', Y', R' \rangle$. A pair $(F, G) : \mathbf{R} \to \mathbf{R}'$ is a *Tukey connection* if

$$F: X \to X', \quad G: Y' \to Y, \quad (\forall x \in X)(\forall y' \in Y') F(x)R'y' \Rightarrow xRG(y).$$

Denote

 $\mathbf{R} \preceq_{\mathbf{T}} \mathbf{R}'$ if $\exists (F, G) : \mathbf{R} \rightarrow \mathbf{R}'$.

If
$$\mathbf{R} = \langle X, Y, R \rangle$$
, denote $\mathbf{R}^{\perp} = \langle Y, X, R^{\perp} \rangle$ where
 $yR^{\perp}x$ iff $\neg(xRy)$.

Note that $\mathfrak{b}(\mathbf{R}^{\perp}) = \mathfrak{d}(\mathbf{R})$ and $\mathfrak{d}(\mathbf{R}^{\perp}) = \mathfrak{b}(\mathbf{R})$.

Let $\mathbf{R}' = \langle X', Y', R' \rangle$. A pair $(F, G) : \mathbf{R} \to \mathbf{R}'$ is a *Tukey connection* if

$$F: X \to X', \quad G: Y' \to Y, \quad (\forall x \in X)(\forall y' \in Y') F(x)R'y' \Rightarrow xRG(y).$$

Denote

$$\begin{split} & \mathbf{R} \preceq_{\mathrm{T}} \mathbf{R}' \text{ if } \exists (F,G) : \mathbf{R} \to \mathbf{R}'. \\ & \mathbf{R} \cong_{\mathrm{T}} \mathbf{R}' \text{ if } \mathbf{R} \preceq_{\mathrm{T}} \mathbf{R}' \text{ and } \mathbf{R}' \preceq_{\mathrm{T}} \mathbf{R}. \end{split}$$

If
$$\mathbf{R} = \langle X, Y, R \rangle$$
, denote $\mathbf{R}^{\perp} = \langle Y, X, R^{\perp} \rangle$ where
 $yR^{\perp}x$ iff $\neg(xRy)$.

Note that $\mathfrak{b}(\mathbf{R}^{\perp}) = \mathfrak{d}(\mathbf{R})$ and $\mathfrak{d}(\mathbf{R}^{\perp}) = \mathfrak{b}(\mathbf{R})$.

Let $\mathbf{R}' = \langle X', Y', R' \rangle$. A pair $(F, G) : \mathbf{R} \to \mathbf{R}'$ is a *Tukey connection* if

$$F: X \to X', \quad G: Y' \to Y, \quad (\forall x \in X)(\forall y' \in Y') F(x)R'y' \Rightarrow xRG(y).$$

Denote

$$\begin{split} & \mathbf{R} \preceq_{\mathrm{T}} \mathbf{R}' \text{ if } \exists (F, G) : \mathbf{R} \to \mathbf{R}'. \\ & \mathbf{R} \cong_{\mathrm{T}} \mathbf{R}' \text{ if } \mathbf{R} \preceq_{\mathrm{T}} \mathbf{R}' \text{ and } \mathbf{R}' \preceq_{\mathrm{T}} \mathbf{R}. \end{split}$$

1 $\mathbf{R} \preceq_{\mathrm{T}} \mathbf{R}'$ implies $\mathfrak{b}(\mathbf{R}') \leq \mathfrak{b}(\mathbf{R})$ and $\mathfrak{d}(\mathbf{R}) \leq \mathfrak{d}(\mathbf{R}')$.

< ロ > < 同 > < 三 > < 三

If
$$\mathbf{R} = \langle X, Y, R \rangle$$
, denote $\mathbf{R}^{\perp} = \langle Y, X, R^{\perp} \rangle$ where
 $yR^{\perp}x$ iff $\neg(xRy)$.

Note that $\mathfrak{b}(\mathbf{R}^{\perp}) = \mathfrak{d}(\mathbf{R})$ and $\mathfrak{d}(\mathbf{R}^{\perp}) = \mathfrak{b}(\mathbf{R})$.

Let $\mathbf{R}' = \langle X', Y', R' \rangle$. A pair $(F, G) : \mathbf{R} \to \mathbf{R}'$ is a *Tukey connection* if

$$F: X \to X', \quad G: Y' \to Y, \quad (\forall x \in X)(\forall y' \in Y') F(x)R'y' \Rightarrow xRG(y).$$

Denote

$$\begin{split} & \mathbf{R} \preceq_{\mathrm{T}} \mathbf{R}' \text{ if } \exists (F, G) : \mathbf{R} \to \mathbf{R}'. \\ & \mathbf{R} \cong_{\mathrm{T}} \mathbf{R}' \text{ if } \mathbf{R} \preceq_{\mathrm{T}} \mathbf{R}' \text{ and } \mathbf{R}' \preceq_{\mathrm{T}} \mathbf{R}. \end{split}$$

9 $\mathbf{R} \preceq_{\mathrm{T}} \mathbf{R}'$ implies $\mathfrak{b}(\mathbf{R}') \le \mathfrak{b}(\mathbf{R})$ and $\mathfrak{d}(\mathbf{R}) \le \mathfrak{d}(\mathbf{R}')$. **9** $\mathbf{R} \cong_{\mathrm{T}} \mathbf{R}'$ implies $\mathfrak{b}(\mathbf{R}) = \mathfrak{b}(\mathbf{R}')$ and $\mathfrak{d}(\mathbf{R}) = \mathfrak{d}(\mathbf{R}')$

・ロト ・ 日 ト ・ ヨ ト ・

For $h \in \omega^{\omega}$ let $Lc(h) = \langle \omega^{\omega}, ([\omega]^{<\aleph_0})^{\omega}, \in_h^* \rangle$ where $x \in_h^* \varphi$ iff $(\forall i) |\varphi(i)| \leq h(i)$, and $(\exists m)(\forall i \geq m) x(i) \in \varphi(i)$.

Image: Image:

For $h \in \omega^{\omega}$ let $Lc(h) = \langle \omega^{\omega}, ([\omega]^{<\aleph_0})^{\omega}, \in_h^* \rangle$ where $x \in_h^* \varphi$ iff $(\forall i) |\varphi(i)| \le h(i)$, and $(\exists m)(\forall i \ge m) x(i) \in \varphi(i)$.

Bartoszyński (1984)

If $h \to \infty$ then $\mathcal{N} \cong_{\mathrm{T}} \mathsf{Lc}(h)$. Hence $\mathfrak{b}(\mathsf{Lc}(h)) = \mathrm{add}(\mathcal{N})$ and $\mathfrak{d}(\mathsf{Lc}(h)) = \mathrm{cof}(\mathcal{N})$.

- 4 回 ト 4 回 ト 4

Theorem (Brendle 1991)

If $\kappa \geq \aleph_1$ is regular and $\lambda = \lambda^{<\kappa}$, then it is consistent with ZFC that

Conditions. $\varphi : \omega \to [\omega]^{<\aleph_0}$ such that $(\forall i) |\varphi(i)| \le i$, and $(\exists m)(\forall i \ge m) |\varphi(i)| \le m$.

Conditions. $\varphi : \omega \to [\omega]^{<\aleph_0}$ such that $(\forall i) |\varphi(i)| \le i$, and $(\exists m)(\forall i \ge m) |\varphi(i)| \le m$. Order. $\varphi \le \psi$ iff $(\forall i) \varphi(i) \subseteq \psi(i)$.

Conditions. $\varphi : \omega \to [\omega]^{<\aleph_0}$ such that $(\forall i) |\varphi(i)| \le i$, and $(\exists m)(\forall i \ge m) |\varphi(i)| \le m$. Order. $\varphi \le \psi$ iff $(\forall i) \varphi(i) \subseteq \psi(i)$.

• **LOC** is σ -linked (thus ccc).

Conditions. $\varphi : \omega \to [\omega]^{\leq \aleph_0}$ such that $(\forall i) |\varphi(i)| \leq i$, and $(\exists m)(\forall i \geq m) |\varphi(i)| \leq m$. Order. $\varphi \leq \psi$ iff $(\forall i) \varphi(i) \subseteq \psi(i)$.

- **LOC** is σ -linked (thus ccc).
- It adds a slalom φ^{*} such that (∀x ∈ ω^ω ∩ V) x∈^{*}_{id}φ^{*} (so it increases add(N)).

Conditions. $\varphi : \omega \to [\omega]^{\leq \aleph_0}$ such that $(\forall i) |\varphi(i)| \leq i$, and $(\exists m)(\forall i \geq m) |\varphi(i)| \leq m$. Order. $\varphi \leq \psi$ iff $(\forall i) \varphi(i) \subseteq \psi(i)$.

- **LOC** is σ -linked (thus ccc).
- It adds a slalom φ^{*} such that (∀x ∈ ω^ω ∩ V) x∈^{*}_{id}φ^{*} (so it increases add(N)).
- § If $N \subseteq V$ is a transitive model (of ZFC) then \mathbb{LOC}^N is still σ -linked.

Perform a FS iteration of length λ using

 $\mathbb{LOC}^{N_{\xi}}$ for some transitive model N_{ξ} of size $<\kappa$.

$$V = V_0 \bullet \cdots \bullet \underbrace{\mathbb{LOC}^{N_{\xi}}}_{V_{\xi}} \underbrace{\mathbb{LOC}^{N_{\xi+1}}}_{V_{\xi+1}} \underbrace{\mathbb{LOC}^{N_{\xi+2}}}_{V_{\xi+3}} \bullet \cdots \bullet \underbrace{V_{\eta}}_{V_{\eta}} \cdots \bullet \underbrace{V_{\lambda}}_{V_{\lambda}}$$

Perform a FS iteration of length λ using

 $\mathbb{LOC}^{N_{\xi}}$ for some transitive model N_{ξ} of size $<\kappa$.

$$V = V_0 \bullet \cdots \bullet \underbrace{\mathbb{LOC}^{N_{\xi}}}_{V_{\xi}} \underbrace{\mathbb{LOC}^{N_{\xi+1}}}_{V_{\xi+1}} \underbrace{\mathbb{LOC}^{N_{\xi+2}}}_{V_{\xi+3}} \bullet \cdots \bullet \underbrace{V_{\eta}}_{V_{\eta}} \cdots \bullet \underbrace{V_{\eta}}_{V_{\lambda}}$$

Book-keeping argument: Any \mathbb{P} -name $\dot{Z} \subseteq \omega^{\omega}$, $|\dot{Z}| < \kappa$ is contained in some N_{ξ} ($\xi < \lambda$) (OK because $\lambda^{<\kappa} = \lambda$).

Perform a FS iteration of length λ using

 $\mathbb{LOC}^{N_{\xi}}$ for some transitive model N_{ξ} of size $<\kappa$.

$$V = V_0 \bullet \cdots \bullet \underbrace{\mathbb{LOC}^{N_{\xi}}}_{V_{\xi}} \underbrace{\mathbb{LOC}^{N_{\xi+1}}}_{V_{\xi+1}} \underbrace{\mathbb{LOC}^{N_{\xi+2}}}_{V_{\xi+3}} \bullet \cdots \bullet \underbrace{V_{\eta}}_{V_{\eta}} \cdots \bullet \underbrace{V_{\eta}}_{V_{\lambda}}$$

Book-keeping argument: Any \mathbb{P} -name $\dot{Z} \subseteq \omega^{\omega}$, $|\dot{Z}| < \kappa$ is contained in some N_{ξ} ($\xi < \lambda$) (OK because $\lambda^{<\kappa} = \lambda$).

In V_{λ} , for any $\xi < \lambda$ let φ_{ξ} be the slalom added by $\mathbb{LOC}^{N_{\xi}}$.

Perform a FS iteration of length λ using

 $\mathbb{LOC}^{N_{\xi}}$ for some transitive model N_{ξ} of size $<\kappa$.

$$V = V_0 \bullet \cdots \bullet \underbrace{\mathbb{LOC}^{N_{\xi}}}_{V_{\xi}} \underbrace{\mathbb{LOC}^{N_{\xi+1}}}_{V_{\xi+1}} \underbrace{\mathbb{LOC}^{N_{\xi+2}}}_{V_{\xi+3}} \bullet \cdots \bullet \underbrace{V_{\eta}}_{V_{\eta}} \cdots \bullet \underbrace{V_{\eta}}_{V_{\lambda}}$$

Book-keeping argument: Any \mathbb{P} -name $\dot{Z} \subseteq \omega^{\omega}$, $|\dot{Z}| < \kappa$ is contained in some N_{ξ} ($\xi < \lambda$) (OK because $\lambda^{<\kappa} = \lambda$).

In V_{λ} , for any $\xi < \lambda$ let φ_{ξ} be the slalom added by $\mathbb{LOC}^{N_{\xi}}$.

 $(\forall x \in \omega^{\omega} \cap N_{\xi}) x \in_{\mathrm{id}}^{*} \varphi_{\xi}.$

Perform a FS iteration of length λ using

 $\mathbb{LOC}^{N_{\xi}}$ for some transitive model N_{ξ} of size $<\kappa$.

$$V = V_0 \bullet \cdots \bullet \underbrace{\mathbb{LOC}^{N_{\xi}}}_{V_{\xi}} \underbrace{\mathbb{LOC}^{N_{\xi+1}}}_{V_{\xi+1}} \underbrace{\mathbb{LOC}^{N_{\xi+2}}}_{V_{\xi+3}} \bullet \cdots \bullet \underbrace{V_{\eta}}_{V_{\eta}} \cdots \bullet \underbrace{V_{\eta}}_{V_{\lambda}}$$

Book-keeping argument: Any \mathbb{P} -name $\dot{Z} \subseteq \omega^{\omega}$, $|\dot{Z}| < \kappa$ is contained in some N_{ξ} ($\xi < \lambda$) (OK because $\lambda^{<\kappa} = \lambda$).

In V_{λ} , for any $\xi < \lambda$ let φ_{ξ} be the slalom added by $\mathbb{LOC}^{N_{\xi}}$.

$$(\forall x \in \omega^{\omega} \cap \mathsf{N}_{\xi}) x \in_{\mathrm{id}}^{*} \varphi_{\xi}.$$

Our For any Z ⊆ ω^ω of size <κ, there is some ξ < λ such that</p> $(\forall x \in Z) x ∈_{id}^* φ_ξ.$

Perform a FS iteration of length λ using

 $\mathbb{LOC}^{N_{\xi}}$ for some transitive model N_{ξ} of size $<\kappa$.

$$V = V_0 \bullet \cdots \bullet \underbrace{\mathbb{LOC}^{N_{\xi}}}_{V_{\xi}} \underbrace{\mathbb{LOC}^{N_{\xi+1}}}_{V_{\xi+1}} \underbrace{\mathbb{LOC}^{N_{\xi+2}}}_{V_{\xi+3}} \bullet \cdots \bullet \underbrace{V_{\eta}}_{V_{\eta}} \cdots \bullet \underbrace{V_{\eta}}_{V_{\lambda}}$$

Book-keeping argument: Any \mathbb{P} -name $\dot{Z} \subseteq \omega^{\omega}$, $|\dot{Z}| < \kappa$ is contained in some N_{ξ} ($\xi < \lambda$) (OK because $\lambda^{<\kappa} = \lambda$).

In V_{λ} , for any $\xi < \lambda$ let φ_{ξ} be the slalom added by $\mathbb{LOC}^{N_{\xi}}$.

$$(\forall x \in \omega^{\omega} \cap N_{\xi}) x \in_{\mathrm{id}}^{*} \varphi_{\xi}.$$

 For any Z ⊆ ω^ω of size <κ, there is some ξ < λ such that (∀x ∈ Z) x ∈^{*}_{id} φ_ξ.

Hence $\kappa \leq \operatorname{add}(\mathcal{N})$.

Perform a FS iteration of length λ using

 $\mathbb{LOC}^{N_{\xi}}$ for some transitive model N_{ξ} of size $<\kappa$.

$$V = V_0 \bullet \cdots \bullet \underbrace{\mathbb{LOC}^{N_{\xi}}}_{V_{\xi}} \underbrace{\mathbb{LOC}^{N_{\xi+1}}}_{V_{\xi+1}} \underbrace{\mathbb{LOC}^{N_{\xi+2}}}_{V_{\xi+3}} \bullet \cdots \bullet \underbrace{V_{\eta}}_{V_{\eta}} \cdots \bullet \underbrace{V_{\eta}}_{V_{\lambda}}$$

Book-keeping argument: Any \mathbb{P} -name $\dot{Z} \subseteq \omega^{\omega}$, $|\dot{Z}| < \kappa$ is contained in some N_{ξ} ($\xi < \lambda$) (OK because $\lambda^{<\kappa} = \lambda$).

In V_{λ} , for any $\xi < \lambda$ let φ_{ξ} be the slalom added by $\mathbb{LOC}^{N_{\xi}}$.

 For any Z ⊆ ω^ω of size <κ, there is some ξ < λ such that (∀x ∈ Z) x ∈^{*}_{id} φ_ξ.

Hence $\kappa \leq \operatorname{add}(\mathcal{N})$. On the other hand, $\mathfrak{c} \leq \lambda$.

It remains $\operatorname{non}(\mathcal{M}) \leq \kappa$ and $\lambda \leq \operatorname{cov}(\mathcal{M}) \dots$

It remains $non(\mathcal{M}) \leq \kappa$ and $\lambda \leq cov(\mathcal{M}) \dots$ Later

It remains $\operatorname{non}(\mathcal{M}) \leq \kappa$ and $\lambda \leq \operatorname{cov}(\mathcal{M}) \dots$ Later

θ -**R**-DOM

Let $\mathbf{R} = \langle X, Y, R \rangle$. Say that $D \subseteq Y$ is θ -**R**-DOM if, for any $B \subseteq X$ of size $\langle \theta$ there is some $y \in D$ such that $(\forall x \in B) \times Ry$.

It remains $non(\mathcal{M}) \leq \kappa$ and $\lambda \leq cov(\mathcal{M}) \dots$ Later

θ -**R**-DOM

Let $\mathbf{R} = \langle X, Y, R \rangle$. Say that $D \subseteq Y$ is θ -**R**-DOM if, for any $B \subseteq X$ of size $\langle \theta$ there is some $y \in D$ such that $(\forall x \in B) \times Ry$.

For example, $\{\varphi_{\xi} : \xi < \lambda\}$ is κ -Lc(id)-DOM.

It remains $\operatorname{non}(\mathcal{M}) \leq \kappa$ and $\lambda \leq \operatorname{cov}(\mathcal{M}) \dots$ Later

θ -R-DOM

Let $\mathbf{R} = \langle X, Y, R \rangle$. Say that $D \subseteq Y$ is θ -**R**-DOM if, for any $B \subseteq X$ of size $\langle \theta$ there is some $y \in D$ such that $(\forall x \in B) \times Ry$.

For example, $\{\varphi_{\xi} : \xi < \lambda\}$ is κ -Lc(id)-DOM.

Lemma

If $\exists D \subseteq Y \ \theta$ -**R**-DOM, then $\theta \leq \mathfrak{b}(\mathbf{R})$ and $\mathfrak{d}(\mathbf{R}) \leq |D|$.

It remains $\operatorname{non}(\mathcal{M}) \leq \kappa$ and $\lambda \leq \operatorname{cov}(\mathcal{M}) \dots$ Later

θ -R-DOM

Let $\mathbf{R} = \langle X, Y, R \rangle$. Say that $D \subseteq Y$ is θ -**R**-DOM if, for any $B \subseteq X$ of size $\langle \theta$ there is some $y \in D$ such that $(\forall x \in B) \times Ry$.

For example, $\{\varphi_{\xi} : \xi < \lambda\}$ is κ -Lc(id)-DOM.

Lemma

If $\exists D \subseteq Y \ \theta$ -**R**-DOM, then $\theta \leq \mathfrak{b}(\mathbf{R})$ and $\mathfrak{d}(\mathbf{R}) \leq |D|$.

Also useful for θ -**R**^{\perp}-DOM.

Special dominating families 2

Fix a directed order $S = \langle S, \leq \rangle$.

Image: Image:

Fix a directed order $S = \langle S, \leq \rangle$.

Definition (cf. Goldstern & Kellner & Shelah, 2017arxiv-2019pub)

Say that $\{y_i : i \in S\} \subseteq Y$ is S-R-COB if

 $(\forall x \in X)(\exists i_x \in S)(\forall i \geq i_x) xRy_i.$

Fix a directed order $S = \langle S, \leq \rangle$.

Definition (cf. Goldstern & Kellner & Shelah, 2017arxiv-2019pub)

Say that $\{y_i : i \in S\} \subseteq Y$ is S-R-COB if

 $(\forall x \in X)(\exists i_x \in S)(\forall i \geq i_x) x R y_i.$

 $x \mapsto i_x$ and $i \mapsto y_i$ is a Tukey connection for $\mathbb{R} \leq_T S$.

Fix a directed order $S = \langle S, \leq \rangle$.

Definition (cf. Goldstern & Kellner & Shelah, 2017arxiv-2019pub)

Say that $\{y_i : i \in S\} \subseteq Y$ is S-R-COB if

 $(\forall x \in X)(\exists i_x \in S)(\forall i \geq i_x) x R y_i.$

 $x \mapsto i_x$ and $i \mapsto y_i$ is a Tukey connection for $\mathbb{R} \leq_T S$.

Fact

 $(\exists S$ -**R**-COB set) iff **R** $\leq_{\mathrm{T}} S$, and each implies $\operatorname{cp}(S) \leq \mathfrak{b}(\mathbf{R})$ and $\mathfrak{d}(\mathbf{R}) \leq \operatorname{cf}(S)$.

Notation

Say that $\mathbf{R} = \langle X, Y, R \rangle$ is Borel if X, Y are Polish spaces and R is Borel.

Notation

Say that $\mathbf{R} = \langle X, Y, R \rangle$ is Borel if X, Y are Polish spaces and R is Borel.

Fix a poset \mathbb{P} and a Borel **R**.

Notation

Say that $\mathbf{R} = \langle X, Y, R \rangle$ is Borel if X, Y are Polish spaces and R is Borel.

Fix a poset \mathbb{P} and a Borel \mathbf{R} .

Definition (Goldstern & Kellner & Shelah, 2017–2019)

 $\operatorname{COB}_{\mathsf{R}}(\mathbb{P}, S)$ means that there is some $\{\dot{y}_i : i \in S\} \subseteq Y$ s.t.

 $(\forall \dot{\mathbf{x}} \in X) (\exists i_{\dot{\mathbf{x}}} \in S) (\forall i \geq i_{\mathbf{x}}) \Vdash_{\mathbb{P}} \dot{\mathbf{x}} R \dot{\mathbf{y}}_i.$

Notation

Say that $\mathbf{R} = \langle X, Y, R \rangle$ is Borel if X, Y are Polish spaces and R is Borel.

Fix a poset \mathbb{P} and a Borel \mathbf{R} .

Definition (Goldstern & Kellner & Shelah, 2017–2019)

 $\operatorname{COB}_{\mathsf{R}}(\mathbb{P}, S)$ means that there is some $\{\dot{y}_i : i \in S\} \subseteq Y$ s.t.

 $(\forall \dot{\mathbf{x}} \in X) (\exists i_{\dot{\mathbf{x}}} \in S) (\forall i \geq i_{\mathbf{x}}) \Vdash_{\mathbb{P}} \dot{\mathbf{x}} R \dot{\mathbf{y}}_i.$

○ $\operatorname{COB}_{\mathsf{R}}(\mathbb{P}, S)$ implies $\Vdash_{\mathbb{P}} \mathsf{R} \preceq_{\mathrm{T}} S$.

Notation

Say that $\mathbf{R} = \langle X, Y, R \rangle$ is Borel if X, Y are Polish spaces and R is Borel.

Fix a poset \mathbb{P} and a Borel \mathbf{R} .

Definition (Goldstern & Kellner & Shelah, 2017–2019)

 $\operatorname{COB}_{\mathsf{R}}(\mathbb{P}, S)$ means that there is some $\{\dot{y}_i : i \in S\} \subseteq Y$ s.t.

 $(\forall \dot{\mathbf{x}} \in X) (\exists i_{\dot{\mathbf{x}}} \in S) (\forall i \geq i_{\mathbf{x}}) \Vdash_{\mathbb{P}} \dot{\mathbf{x}} R \dot{\mathbf{y}}_i.$

- **1** COB_{**R**}(\mathbb{P} , *S*) implies $\Vdash_{\mathbb{P}}$ **R** \preceq_{T} *S*.
- ② COB_R(\mathbb{P} , S) implies $\Vdash_{\mathbb{P}}$ "cp(S)^V ≤ $\mathfrak{b}(\mathbf{R})$ and $\mathfrak{d}(\mathbf{R}) \leq cf(S)^{V"}$.

(日) (同) (三) (三)

Notation

Say that $\mathbf{R} = \langle X, Y, R \rangle$ is Borel if X, Y are Polish spaces and R is Borel.

Fix a poset \mathbb{P} and a Borel \mathbf{R} .

Definition (Goldstern & Kellner & Shelah, 2017–2019)

 $\operatorname{COB}_{\mathsf{R}}(\mathbb{P}, S)$ means that there is some $\{\dot{y}_i : i \in S\} \subseteq Y$ s.t.

 $(\forall \dot{\mathbf{x}} \in X) (\exists i_{\dot{\mathbf{x}}} \in S) (\forall i \geq i_{\mathbf{x}}) \Vdash_{\mathbb{P}} \dot{\mathbf{x}} R \dot{\mathbf{y}}_i.$

- $\operatorname{COB}_{\mathsf{R}}(\mathbb{P}, S)$ implies $\Vdash_{\mathbb{P}} \mathsf{R} \preceq_{\mathrm{T}} S$.
- ② COB_R(\mathbb{P} , S) implies $\Vdash_{\mathbb{P}}$ "cp(S)^V ≤ $\mathfrak{b}(\mathbf{R})$ and $\mathfrak{d}(\mathbf{R}) \leq cf(S)^{V''}$.
- If \mathbb{P} is $\operatorname{cp}(S)^V$ -cc then $\Vdash_{\mathbb{P}} \operatorname{cp}(S) = \operatorname{cp}(S)^V$.

(日) (周) (三) (三)

Notation

Say that $\mathbf{R} = \langle X, Y, R \rangle$ is Borel if X, Y are Polish spaces and R is Borel.

Fix a poset \mathbb{P} and a Borel \mathbf{R} .

Definition (Goldstern & Kellner & Shelah, 2017–2019)

 $\operatorname{COB}_{\mathsf{R}}(\mathbb{P}, S)$ means that there is some $\{\dot{y}_i : i \in S\} \subseteq Y$ s.t.

 $(\forall \dot{\mathbf{x}} \in X) (\exists i_{\dot{\mathbf{x}}} \in S) (\forall i \geq i_{\mathbf{x}}) \Vdash_{\mathbb{P}} \dot{\mathbf{x}} R \dot{\mathbf{y}}_i.$

- $\operatorname{COB}_{\mathsf{R}}(\mathbb{P}, S)$ implies $\Vdash_{\mathbb{P}} \mathsf{R} \preceq_{\mathrm{T}} S$.
- ② COB_R(\mathbb{P} , S) implies $\Vdash_{\mathbb{P}}$ "cp(S)^V ≤ $\mathfrak{b}(\mathbf{R})$ and $\mathfrak{d}(\mathbf{R}) \leq cf(S)^{V''}$.
- If \mathbb{P} is $\operatorname{cp}(S)^V$ -cc then $\Vdash_{\mathbb{P}} \operatorname{cp}(S) = \operatorname{cp}(S)^V$.
- If \mathbb{P} is $cp(S)^V$ -cc then $COB_{\mathbf{R}}(\mathbb{P}, S)$ iff $\Vdash_{\mathbb{P}} \mathbf{R} \preceq_{\mathrm{T}} S$.

イロト イヨト イヨト

$$V = V_0 \bullet \cdots \bullet \underbrace{\mathbb{LOC}^{N_{\xi}}}_{V_{\xi}} \underbrace{\mathbb{LOC}^{N_{\xi+1}}}_{V_{\xi+1}} \underbrace{\mathbb{LOC}^{N_{\xi+2}}}_{V_{\xi+3}} \bullet \cdots \bullet \underbrace{V_{\eta}}_{V_{\eta}} \cdots \bullet \underbrace{V_{\eta}}_{V_{\lambda}}$$

Modified book-keeping. For $\alpha < \kappa$, $A \subseteq \lambda$ in V and a \mathbb{P}_{λ} -name $\dot{x} \in \omega^{\omega}$, if $|A| < \kappa$ then, for some $\eta < \lambda$, $\dot{x} \in \dot{N}_{\eta}$ and $(\forall \xi \in A) \xi < \eta$, $\dot{N}_{\xi} \subseteq \dot{N}_{\eta}$.

$$V = V_0 \bullet \cdots \bullet \underbrace{\mathbb{LOC}^{N_{\xi}}}_{V_{\xi}} \underbrace{\mathbb{LOC}^{N_{\xi+1}}}_{V_{\xi+1}} \underbrace{\mathbb{LOC}^{N_{\xi+2}}}_{V_{\xi+3}} \bullet \cdots \bullet \underbrace{V_{\eta}}_{V_{\eta}} \cdots \bullet \underbrace{V_{\eta}}_{V_{\lambda}}$$

 $S := \lambda$ ordered by $\xi \leq_S \eta$ iff $\xi \leq \eta$ and $\Vdash \dot{N}_{\xi} \subseteq \dot{N}_{\eta}$.

$$V = V_0 \bullet \cdots \bullet \underbrace{\mathbb{LOC}^{N_{\xi}}}_{V_{\xi}} \underbrace{\mathbb{LOC}^{N_{\xi+1}}}_{V_{\xi+1}} \underbrace{\mathbb{LOC}^{N_{\xi+2}}}_{V_{\xi+3}} \bullet \cdots \bullet \underbrace{V_{\eta}}_{V_{\eta}} \cdots \bullet \underbrace{V_{\eta}}_{V_{\lambda}}$$

 $S := \lambda$ ordered by $\xi \leq_S \eta$ iff $\xi \leq \eta$ and $\Vdash \dot{N}_{\xi} \subseteq \dot{N}_{\eta}$.

$$V = V_0 \bullet \cdots \bullet \underbrace{\mathbb{LOC}^{N_{\xi}}}_{V_{\xi}} \underbrace{\mathbb{LOC}^{N_{\xi+1}}}_{V_{\xi+1}} \underbrace{\mathbb{LOC}^{N_{\xi+2}}}_{V_{\xi+3}} \bullet \cdots \bullet \underbrace{V_{\eta}}_{V_{\eta}} \cdots \bullet \underbrace{V_{\eta}}_{V_{\lambda}}$$

 $S := \lambda$ ordered by $\xi \leq_S \eta$ iff $\xi \leq \eta$ and $\Vdash \dot{N}_{\xi} \subseteq \dot{N}_{\eta}$.

•
$$\kappa \leq \operatorname{cp}(S) \leq \operatorname{cf}(S) \leq |S| = \lambda.$$

• $\{\varphi_{\xi} : \xi < \lambda\}$ is *S*-Lc(id)-COB.

$$V = V_0 \bullet \cdots \bullet \underbrace{\mathbb{LOC}^{N_{\xi}}}_{V_{\xi}} \underbrace{\mathbb{LOC}^{N_{\xi+1}}}_{V_{\xi+1}} \underbrace{\mathbb{LOC}^{N_{\xi+2}}}_{V_{\xi+3}} \bullet \cdots \bullet \underbrace{V_{\eta}}_{V_{\eta}} \cdots \bullet \underbrace{V_{\eta}}_{V_{\lambda}}$$

 $\mathcal{S} := \lambda$ ordered by $\xi \leq_{\mathcal{S}} \eta$ iff $\xi \leq \eta$ and $\Vdash \dot{\mathcal{N}}_{\xi} \subseteq \dot{\mathcal{N}}_{\eta}$.

2 $\{\varphi_{\xi} : \xi < \lambda\}$ is *S*-Lc(id)-COB.

③ COB_{Lc(id)}(**ℙ**, *S*) holds. So **ℙ** forces $\kappa \leq add(\mathcal{N})$ and $cof(\mathcal{N}) \leq \lambda$.

There is an F_{σ} relation $R_4 \subseteq 2^{\omega}$ such that $\mathbf{R}_4 := \langle 2^{\omega}, 2^{\omega}, R_4 \rangle \cong_{\mathrm{T}} \mathbf{C}_{\mathcal{M}}$. Hence $\mathfrak{b}(\mathbf{R}_4) = \mathrm{non}(\mathcal{M})$ and $\mathfrak{d}(\mathbf{R}) = \mathrm{cov}(\mathcal{M})$ There is an F_{σ} relation $R_4 \subseteq 2^{\omega}$ such that $\mathbf{R}_4 := \langle 2^{\omega}, 2^{\omega}, R_4 \rangle \cong_{\mathrm{T}} \mathbf{C}_{\mathcal{M}}$. Hence $\mathfrak{b}(\mathbf{R}_4) = \mathrm{non}(\mathcal{M})$ and $\mathfrak{d}(\mathbf{R}) = \mathrm{cov}(\mathcal{M})$

Fact

If $c \in 2^{\omega}$ is Cohen over V then $\neg(cR_4y)$ for any $y \in 2^{\omega} \cap V$.

Fact

If $c \in 2^{\omega}$ is Cohen over V then $\neg(cR_4y)$ for any $y \in 2^{\omega} \cap V$.

Fact

If $c \in 2^{\omega}$ is Cohen over V then $\neg(cR_4y)$ for any $y \in 2^{\omega} \cap V$.

Let $\theta \geq \aleph_1$ be regular, \mathbb{P} resulting from a FS it. of ccc posets of length θ .

• It adds a set of Cohen reals $C := \{c_{\xi} : \xi < \theta\}.$

Fact

If $c \in 2^{\omega}$ is Cohen over V then $\neg(cR_4y)$ for any $y \in 2^{\omega} \cap V$.

- It adds a set of Cohen reals $C := \{c_{\xi} : \xi < \theta\}.$
- $(\forall y \in 2^{\omega} \cap V_{\theta}) (\exists \xi_0 < \theta) (\forall \xi \ge \xi_0) \neg (c_{\xi} R_4 y).$

Fact

If $c \in 2^{\omega}$ is Cohen over V then $\neg(cR_4y)$ for any $y \in 2^{\omega} \cap V$.

- It adds a set of Cohen reals $C := \{c_{\xi} : \xi < \theta\}.$
- $(\forall y \in 2^{\omega} \cap V_{\theta}) (\exists \xi_0 < \theta) (\forall \xi \ge \xi_0) \neg (c_{\xi} R_4 y).$
- **I** P forces that *C* is θ -**R**^{\perp}₄-COB.

Fact

If $c \in 2^{\omega}$ is Cohen over V then $\neg(cR_4y)$ for any $y \in 2^{\omega} \cap V$.

- It adds a set of Cohen reals $C := \{c_{\xi} : \xi < \theta\}.$
- $(\forall y \in 2^{\omega} \cap V_{\theta}) (\exists \xi_0 < \theta) (\forall \xi \ge \xi_0) \neg (c_{\xi} R_4 y).$
- **③** \mathbb{P} forces that *C* is θ -**R**^{\perp}₄-COB.

• P forces
$$\mathfrak{b}(\mathsf{R}_4) \leq \mathrm{cf}(\theta) = \theta \leq \mathfrak{d}(\mathsf{R}_4)$$
.

Fix a Borel
$$\mathbf{R} = \langle X, Y, R \rangle$$
.

Definition

Let L be a linear order.

• $F \subseteq X$ is *L*-**R**-LCU if it is *L*-**R**^{\perp}-COB.

Fix a Borel
$$\mathbf{R} = \langle X, Y, R \rangle$$
.

Definition

Let L be a linear order.

- $F \subseteq X$ is *L*-**R**-LCU if it is *L*-**R**^{\perp}-COB.
- **2** LCU_R(\mathbb{P} , L) means COB_{R[⊥]}(\mathbb{P} , L).

Fix a Borel
$$\mathbf{R} = \langle X, Y, R \rangle$$
.

Definition

Let L be a linear order.

• $F \subseteq X$ is *L*-**R**-LCU if it is *L*-**R**^{\perp}-COB.

2 LCU_R(\mathbb{P}, L) means COB_{R^{\perp}}(\mathbb{P}, L).

• LCU_R(\mathbb{P}, L) implies $\Vdash_{\mathbb{P}} \mathbb{R}^{\perp} \preceq_{\mathrm{T}} L$.

Fix a Borel
$$\mathbf{R} = \langle X, Y, R \rangle$$
.

Definition

Let L be a linear order.

• $F \subseteq X$ is *L*-**R**-LCU if it is *L*-**R**^{\perp}-COB.

2 LCU_R(\mathbb{P} , L) means COB_{R^{\perp}}(\mathbb{P} , L).

- LCU_R(\mathbb{P}, L) implies $\Vdash_{\mathbb{P}} \mathbb{R}^{\perp} \preceq_{\mathrm{T}} L$.
- **2** LCU_{**R**}(**P**, *L*) implies $\Vdash_{\mathbb{P}}$ "𝔅(**R**) ≤ cf(*L*)^{*V*} ≤ 𝔅(**R**)".

Fix a Borel
$$\mathbf{R} = \langle X, Y, R \rangle$$
.

Definition

Let L be a linear order.

• $F \subseteq X$ is *L*-**R**-LCU if it is *L*-**R**^{\perp}-COB.

2 LCU_R(\mathbb{P}, L) means COB_{R^{\perp}}(\mathbb{P}, L).

- LCU_R(\mathbb{P}, L) implies $\Vdash_{\mathbb{P}} \mathbb{R}^{\perp} \preceq_{\mathrm{T}} L$.
- ② LCU_R(\mathbb{P} , *L*) implies $\Vdash_{\mathbb{P}}$ " $\mathfrak{b}(\mathbf{R}) \leq cf(L)^{V} \leq \mathfrak{d}(\mathbf{R})$ ".
- If \mathbb{P} is $cf(L)^V$ -cc then $\Vdash_{\mathbb{P}} cf(L) = cf(L)^V$.

Fix a Borel
$$\mathbf{R} = \langle X, Y, R \rangle$$
.

Definition

Let L be a linear order.

• $F \subseteq X$ is *L*-**R**-LCU if it is *L*-**R**^{\perp}-COB.

2 LCU_R(\mathbb{P}, L) means COB_{R^{\perp}}(\mathbb{P}, L).

- **1** LCU_{**R**}(\mathbb{P} , *L*) implies $\Vdash_{\mathbb{P}} \mathbf{R}^{\perp} \preceq_{\mathrm{T}} L$.
- ② LCU_R(\mathbb{P}, L) implies $\Vdash_{\mathbb{P}}$ " $\mathfrak{b}(\mathbf{R}) \leq cf(L)^{V} \leq \mathfrak{d}(\mathbf{R})$ ".
- If \mathbb{P} is $cf(L)^V$ -cc then $\Vdash_{\mathbb{P}} cf(L) = cf(L)^V$.
- If \mathbb{P} is $cf(\mathcal{L})^V$ -cc then $LCU_{\mathbf{R}}(\mathbb{P}, \mathcal{L})$ iff $\Vdash_{\mathbb{P}} \mathbf{R}^{\perp} \preceq_{\mathrm{T}} \mathcal{L}$.

Main Claim

For any regular $\kappa \leq \theta \leq \lambda$, the θ -**R**₄-LCU set of Cohen reals added by \mathbb{P}_{θ} is preserved in V_{λ} . I.e., LCU(\mathbb{P}, θ) holds.

$$V = V_0 \bullet \cdots \bullet \underbrace{\mathbb{LOC}^{N_{\xi}}}_{V_{\xi}} \underbrace{\mathbb{LOC}^{N_{\xi+1}}}_{V_{\xi+1}} \underbrace{\mathbb{LOC}^{N_{\xi+2}}}_{V_{\xi+3}} \bullet \cdots \bullet \underbrace{V_{\eta}}_{V_{\eta}} \cdots \bullet \underbrace{V_{\lambda}}_{V_{\lambda}}$$

Main Claim

For any regular $\kappa \leq \theta \leq \lambda$, the θ -**R**₄-LCU set of Cohen reals added by \mathbb{P}_{θ} is preserved in V_{λ} . I.e., LCU(\mathbb{P}, θ) holds.

For such θ , $\mathbf{R}_{4}^{\perp} \preceq_{\mathrm{T}} \theta$, so $\operatorname{non}(\mathcal{M}) \leq \theta \leq \operatorname{cov}(\mathcal{M})$. Hence $\operatorname{non}(\mathcal{M}) \leq \kappa$ and $\lambda \leq \operatorname{cov}(\mathcal{M})$.

Preservation theory 1

Fix a Borel **R** and $\theta \geq \aleph_1$ regular.

Definition (Judah & Shelah 1990, and Brendle 1991)

A poset \mathbb{P} is θ -**R**-good if $(\forall \dot{y} \in Y)(\exists H \subseteq Y)$:

$$0 < |H| < heta$$
 and $(orall x \in X) \Big[((orall z \in H) \,
eg (xRz)) \Rightarrow \Vdash_{\mathbb{P}}
eg (xR\dot{y})^T \Big]$

Preservation theory 1

Fix a Borel **R** and $\theta \geq \aleph_1$ regular.

Definition (Judah & Shelah 1990, and Brendle 1991)

A poset \mathbb{P} is θ -**R**-good if $(\forall \dot{y} \in Y)(\exists H \subseteq Y)$:

$$0 < |H| < heta ext{ and } (orall x \in X) \Big[((orall z \in H) \,
extsf{--1}(xRz)) \Rightarrow \Vdash_{\mathbb{P}}
extsf{--1}(xR\dot{y})^{-1}$$

Fact

If \mathbb{P} is θ -cc and θ -**R**-good then it preserves

(i) θ -**R**^{\perp}-DOM sets,

- (ii) S-**R**^{\perp}-COB sets whenever $cp(S) \ge \theta$,
- (iii) *L*-**R**-LCU sets whenever $cf(L) \ge \theta$.

Preservation theory 1

Fix a Borel **R** and $\theta \geq \aleph_1$ regular.

Definition (Judah & Shelah 1990, and Brendle 1991)

A poset \mathbb{P} is θ -**R**-good if $(\forall \dot{y} \in Y)(\exists H \subseteq Y)$:

$$0 < |H| < heta ext{ and } (orall x \in X) \Big[((orall z \in H) \,
extsf{--1}(xRz)) \Rightarrow \Vdash_{\mathbb{P}}
extsf{--1}(xR\dot{y})^{-1}$$

Fact

If \mathbb{P} is θ -cc and θ -**R**-good then it preserves

(i) θ -**R**^{\perp}-DOM sets,

(ii) S-**R**^{\perp}-COB sets whenever $cp(S) \ge \theta$,

- (iii) *L*-**R**-LCU sets whenever $cf(L) \ge \theta$.
 - **1** If \mathbb{P} is θ -**R**-good and $\theta \leq \theta'$ then \mathbb{P} is θ' -**R**-good.
 - **2** If \mathbb{P} is θ -**R**-good and $\mathbb{P}_0 \triangleleft \mathbb{P}$ then \mathbb{P}_0 is.

Definition

- Say that $\mathbf{R} = \langle X, Y, R \rangle$ is Polish if
 - X is perfect Polish, Y is Polish,
 - **2** $R = \bigcup_{i < \omega} R_i$ where each R_i is closed,
 - $(\forall y \in Y) \{x \in X : xR_iy\} \text{ is nwd.}$

Definition

- Say that $\mathbf{R} = \langle X, Y, R \rangle$ is Polish if
 - X is perfect Polish, Y is Polish,
 - **2** $R = \bigcup_{i < \omega} R_i$ where each R_i is closed,
 - $(\forall y \in Y) \{x \in X : xR_iy\} \text{ is nwd.}$

This implies $C_{\mathcal{M}} \preceq_{\mathrm{T}} R$, so $\mathfrak{b}(R) \leq \operatorname{non}(\mathcal{M})$ and $\operatorname{cov}(\mathcal{M}) \leq \mathfrak{d}(R)$.

Definition

- Say that $\mathbf{R} = \langle X, Y, R \rangle$ is Polish if
 - X is perfect Polish, Y is Polish,
 - $R = \bigcup_{i < \omega} R_i$ where each R_i is closed,
 - $(\forall y \in Y) \{x \in X : xR_iy\} \text{ is nwd.}$

This implies $C_{\mathcal{M}} \preceq_{\mathrm{T}} R$, so $\mathfrak{b}(R) \leq \operatorname{non}(\mathcal{M})$ and $\operatorname{cov}(\mathcal{M}) \leq \mathfrak{d}(R)$.

Fix a Polish **R** and an uncountable regular κ .

Theorem

Any FS iteration of κ -cc κ -**R**-good posets is again κ -**R**-good.

Definition

- Say that $\mathbf{R} = \langle X, Y, R \rangle$ is Polish if
 - X is perfect Polish, Y is Polish,
 - **2** $R = \bigcup_{i < \omega} R_i$ where each R_i is closed,
 - $(\forall y \in Y) \{x \in X : xR_iy\} \text{ is nwd.}$

This implies $C_{\mathcal{M}} \preceq_{\mathrm{T}} R$, so $\mathfrak{b}(R) \leq \operatorname{non}(\mathcal{M})$ and $\operatorname{cov}(\mathcal{M}) \leq \mathfrak{d}(R)$.

Fix a Polish **R** and an uncountable regular κ .

Theorem

Any FS iteration of κ -cc κ -**R**-good posets is again κ -**R**-good.

Corollary

If \mathbb{P} is a FS iteration of κ -cc κ -**R**-good posets then $LCU_{\mathsf{R}}(\mathbb{P}, \theta)$ holds for any regular $\kappa \leq \theta \leq \text{length}$.

Diego A. Mejía (Shizuoka University)

Fact

For any Polish **R** and $\theta \geq \aleph_1$ regular, if $|\mathbf{P}| < \theta$ then \mathbb{P} is θ -**R**-good.

- **∢ ∃** ►

Fact

For any Polish **R** and $\theta \geq \aleph_1$ regular, if $|\mathbb{P}| < \theta$ then \mathbb{P} is θ -**R**-good.

Since \mathbf{R}_4 is Polish,

$$V = V_0 \bullet \cdots \bullet \underbrace{\mathbb{LOC}^{N_{\xi}}}_{V_{\xi}} \underbrace{\mathbb{LOC}^{N_{\xi+1}}}_{V_{\xi+2}} \underbrace{\mathbb{LOC}^{N_{\xi+2}}}_{V_{\xi+3}} \bullet \cdots \bullet \underbrace{V_{\eta}}_{V_{\eta}} \cdots \bullet \underbrace{V_{\lambda}}_{V_{\lambda}}$$

is κ -**R**₄-good. This proves the Main Claim before.

1 $\mathbf{R}_3 := \omega^{\omega}$ is Polish.

メロト メポト メモト メモト

- **1** $\mathbf{R}_3 := \omega^{\omega}$ is Polish.
- **2** There is a Polish $\mathbf{R}_2 \cong_T \mathbf{C}_{\mathcal{N}}^{\perp}$ ($\mathfrak{b}(\mathbf{R}_2) = \operatorname{cov}(\mathcal{N})$, $\mathfrak{d}(\mathbf{R}_2) = \operatorname{non}(\mathcal{N})$).

< A

- **1** $\mathbf{R}_3 := \omega^{\omega}$ is Polish.
- Poish R₂ ≃_T C[⊥]_N (b(R₂) = cov(N), ∂(R₂) = non(N)).
 (Brendle 1991) Any θ-centered poset is θ⁺-R₂-good.

1 $\mathbf{R}_3 := \omega^{\omega}$ is Polish.

- **2** There is a Polish $\mathbf{R}_2 \cong_T \mathbf{C}_N^{\perp}$ ($\mathfrak{b}(\mathbf{R}_2) = \operatorname{cov}(\mathcal{N})$, $\mathfrak{d}(\mathbf{R}_2) = \operatorname{non}(\mathcal{N})$). (Brendle 1991) Any θ -centered poset is θ^+ - \mathbf{R}_2 -good.
- $\ \, {\bf S} \ \, {\bf R}_1 := \langle \omega^{\omega}, \left([\omega]^{<\aleph_0} \right)^{\omega}, \in_H^* \rangle \ \, {\rm where} \ \, H = \{ {\rm id}^{k+1} : k < \omega \} \ \, {\rm and} \ \,$

$$\begin{array}{l} x \in_{H}^{*} \varphi \text{ iff } (\exists h \in H)(\forall i) |\varphi(i)| \leq h(i), \text{ and} \\ (\exists m)(\forall i \geq m) x(i) \in \varphi(i). \end{array}$$

1 $\mathbf{R}_3 := \omega^{\omega}$ is Polish.

2 There is a Polish $\mathbf{R}_2 \cong_T \mathbf{C}_{\mathcal{N}}^{\perp}$ ($\mathfrak{b}(\mathbf{R}_2) = \operatorname{cov}(\mathcal{N})$, $\mathfrak{d}(\mathbf{R}_2) = \operatorname{non}(\mathcal{N})$). (Brendle 1991) Any θ -centered poset is θ^+ - \mathbf{R}_2 -good.

 $\ \, {\bf S} \ \, {\bf R}_1 := \langle \omega^{\omega}, \left([\omega]^{<\aleph_0} \right)^{\omega}, \in_H^* \rangle \text{ where } H = \{ \operatorname{id}^{k+1} : k < \omega \} \text{ and }$

$$x \in_{H}^{*} \varphi$$
 iff $(\exists h \in H)(\forall i) |\varphi(i)| \leq h(i)$, and
 $(\exists m)(\forall i \geq m) x(i) \in \varphi(i)$.

Indeed $\mathfrak{b}(\mathbf{R}_1) = \operatorname{add}(\mathcal{N})$ and $\mathfrak{d}(\mathbf{R}_1) = \operatorname{cof}(\mathcal{N})$. (In fact $(\forall h \in H) \operatorname{Lc}(H) \preceq_{\mathrm{T}} \operatorname{Lc}(h)$)

1 $\mathbf{R}_3 := \omega^{\omega}$ is Polish.

- **2** There is a Polish $\mathbf{R}_2 \cong_T \mathbf{C}_{\mathcal{N}}^{\perp}$ ($\mathfrak{b}(\mathbf{R}_2) = \operatorname{cov}(\mathcal{N})$, $\mathfrak{d}(\mathbf{R}_2) = \operatorname{non}(\mathcal{N})$). (Brendle 1991) Any θ -centered poset is θ^+ - \mathbf{R}_2 -good.
- $\ \, {\bf S} \ \, {\bf R}_1 := \langle \omega^{\omega}, \left([\omega]^{<\aleph_0} \right)^{\omega}, \in_H^* \rangle \text{ where } H = \{ \operatorname{id}^{k+1} : k < \omega \} \text{ and }$

$$x \in_{H}^{*} \varphi$$
 iff $(\exists h \in H)(\forall i) |\varphi(i)| \leq h(i)$, and
 $(\exists m)(\forall i \geq m) x(i) \in \varphi(i)$.

Indeed $\mathfrak{b}(\mathbf{R}_1) = \operatorname{add}(\mathcal{N})$ and $\mathfrak{d}(\mathbf{R}_1) = \operatorname{cof}(\mathcal{N})$. (In fact $(\forall h \in H) \operatorname{Lc}(H) \preceq_{\mathrm{T}} \operatorname{Lc}(h)$)

(Judah & Shelah 1990) Any θ -centered poset is θ^+ -**R**₁-good.

1 $\mathbf{R}_3 := \omega^{\omega}$ is Polish.

- **2** There is a Polish $\mathbf{R}_2 \cong_T \mathbf{C}_{\mathcal{N}}^{\perp}$ ($\mathfrak{b}(\mathbf{R}_2) = \operatorname{cov}(\mathcal{N})$, $\mathfrak{d}(\mathbf{R}_2) = \operatorname{non}(\mathcal{N})$). (Brendle 1991) Any θ -centered poset is θ^+ - \mathbf{R}_2 -good.
- $\ \, {\bf S} \ \, {\bf R}_1 := \langle \omega^{\omega}, \left([\omega]^{<\aleph_0} \right)^{\omega}, \in_H^* \rangle \ \, {\rm where} \ \, H = \{ {\rm id}^{k+1} : k < \omega \} \ \, {\rm and} \ \,$

$$egin{aligned} &x\in_H^*arphi \ (\exists h\in H)(orall i)\,|arphi(i)|\leq h(i), ext{ and }\ (\exists m)(orall i\geq m)\,x(i)\inarphi(i). \end{aligned}$$

Indeed $\mathfrak{b}(\mathbf{R}_1) = \operatorname{add}(\mathcal{N})$ and $\mathfrak{d}(\mathbf{R}_1) = \operatorname{cof}(\mathcal{N})$. (In fact $(\forall h \in H) \operatorname{Lc}(H) \preceq_{\mathrm{T}} \operatorname{Lc}(h)$)

(Judah & Shelah 1990) Any θ -centered poset is θ^+ -**R**₁-good. (Kamburelis 1989) Any subalgebra of random forcing is \aleph_1 -**R**₁-good. Let $\mathbf{R}_{\mathrm{rp}} := \langle [\omega]^{\aleph_0}, [\omega]^{\aleph_0}, R_{\mathrm{rp}} \rangle$ where

 $xR_{rp}y \text{ iff } x \supseteq^* y \text{ or } \omega \smallsetminus x \supseteq^* y \text{ (x does not split y)}$

Let $\mathbf{R}_{rp} := \langle [\omega]^{\aleph_0}, [\omega]^{\aleph_0}, R_{rp} \rangle$ where $xR_{rp}y \text{ iff } x \supseteq^* y \text{ or } \omega \smallsetminus x \supseteq^* y \text{ (x does not split y)}$ \mathbf{R}_{rp} is Polish, $\mathfrak{b}(\mathbf{R}_{rp}) = \mathfrak{s}$ and $\mathfrak{d}(\mathbf{R}_{rp}) = \mathfrak{r}$. Let $\mathbf{R}_{\mathrm{rp}} := \langle [\omega]^{\aleph_0}, [\omega]^{\aleph_0}, R_{\mathrm{rp}} \rangle$ where

$$xR_{rp}y$$
 iff $x \supseteq^* y$ or $\omega \smallsetminus x \supseteq^* y$ (x does not split y)

 \mathbf{R}_{rp} is Polish, $\mathfrak{b}(\mathbf{R}_{\mathrm{rp}}) = \mathfrak{s}$ and $\mathfrak{d}(\mathbf{R}_{\mathrm{rp}}) = \mathfrak{r}$.

Baumgartner & Dordal 1985

Hechler forcing is \aleph_1 -**R**_{rp}-good.

Let $\mathbf{R}_{\mathrm{rp}} := \langle [\omega]^{\aleph_0}, [\omega]^{\aleph_0}, R_{\mathrm{rp}} \rangle$ where

 $xR_{rp}y \text{ iff } x \supseteq^* y \text{ or } \omega \smallsetminus x \supseteq^* y \text{ (x does not split y)}$

 \mathbf{R}_{rp} is Polish, $\mathfrak{b}(\mathbf{R}_{\mathrm{rp}}) = \mathfrak{s}$ and $\mathfrak{d}(\mathbf{R}_{\mathrm{rp}}) = \mathfrak{r}$.

Baumgartner & Dordal 1985

Hechler forcing is \aleph_1 -**R**_{rp}-good.

Dow & Shelah 2018

If F is a filter on ω generated by $<\theta$ many sets then \mathbb{L}_F is θ - \mathbf{R}_{rp} -good.

Left side (6 values)

Theorem (Goldstern & M. & Shelah 2016)

Let $\mu_1 \leq \mu_2 \leq \mu_3 = \mu_3^{\aleph_0} \leq \mu_4 = \mu_4^{\aleph_0}$ be uncountable regular cardinals, $\mu_4 < \mu_5 = \mu_5^{<\mu_4} \leq 2^{\mu_3}$. Then, there is a ccc poset forcing

Left side (6 values)

Theorem (Goldstern & M. & Shelah 2016)

Let $\mu_1 \leq \mu_2 \leq \mu_3 = \mu_3^{\aleph_0} \leq \mu_4 = \mu_4^{\aleph_0}$ be uncountable regular cardinals, $\mu_4 < \mu_5 = \mu_5^{<\mu_4} \leq 2^{\mu_3}$. Then, there is a ccc poset forcing

(Goldstern & Kellner & Shelah 2017–2019) Can obtain such a ccc poset under GCH.

Construct a FS it. of length μ_5 alternating:

- \mathbb{LOC}^N with $|N| < \mu_1$,
- (random)^N with $|N| < \mu_2$,
- (Hechler)^N with $|N| < \mu_3$,
- \mathbb{E}^{N} with $|N| < \mu_{4}$ (σ -centered poset to increase $\mathfrak{b}(\mathbf{R}_{4})$)

- \mathbb{LOC}^N with $|N| < \mu_1$,
- (random)^N with $|N| < \mu_2$,
- (Hechler)^N with $|N| < \mu_3$,

• \mathbb{E}^{N} with $|N| < \mu_{4}$ (σ -centered poset to increase $\mathfrak{b}(\mathbf{R}_{4})$)

via book-keeping to get, for i = 1, 2, 3, 4,

 $\operatorname{COB}_{\mathsf{R}_i}(\mathbb{P}, S_i)$ with $\mu_i \leq \operatorname{cp}(S_i) \leq \operatorname{cf}(S_i) \leq |S_i| = \mu_5$.

- \mathbb{LOC}^N with $|N| < \mu_1$,
- (random)^N with $|N| < \mu_2$,
- (Hechler)^N with $|N| < \mu_3$,

• \mathbb{E}^{N} with $|N| < \mu_{4}$ (σ -centered poset to increase $\mathfrak{b}(\mathbf{R}_{4})$)

via book-keeping to get, for i = 1, 2, 3, 4,

 $\operatorname{COB}_{\mathbf{R}_i}(\mathbb{P}, S_i)$ with $\mu_i \leq \operatorname{cp}(S_i) \leq \operatorname{cf}(S_i) \leq |S_i| = \mu_5$.

Hence $\mu_i \leq \mathfrak{b}(\mathbf{R}_i)$ and $\mathfrak{d}(\mathbf{R}_i) \leq \mu_5$ (actually $\mathfrak{c} \leq \mu_5$).

- \mathbb{LOC}^N with $|N| < \mu_1$,
- (random)^N with $|N| < \mu_2$,
- (Hechler)^N with $|N| < \mu_3$,
- \mathbb{E}^N with $|N| < \mu_4$ (σ -centered poset to increase $\mathfrak{b}(\mathbf{R}_4)$)

The iterands are, for i = 1, 2, 4,

 μ_i -**R**_{*i*}-good, so $LCU_{\mathbf{R}_i}(\mathbb{P}, \theta)$ for any regular $\mu_i \leq \theta \leq \mu_5$.

- \mathbb{LOC}^N with $|N| < \mu_1$,
- (random)^N with $|N| < \mu_2$,
- (Hechler)^N with $|N| < \mu_3$,
- \mathbb{E}^N with $|N| < \mu_4$ (σ -centered poset to increase $\mathfrak{b}(\mathbf{R}_4)$)

The iterands are, for i = 1, 2, 4,

 μ_i - \mathbf{R}_i -good, so $\mathrm{LCU}_{\mathbf{R}_i}(\mathbb{P}, \theta)$ for any regular $\mu_i \leq \theta \leq \mu_5$. Hence $\mathfrak{b}(\mathbf{R}_i) \leq \mu_i$ and $\mu_5 \leq \mathfrak{d}(\mathbf{R}_i)$. Iterands except \mathbb{E}^N are μ_3 -**R**₃-good.

Iterands except \mathbb{E}^N are μ_3 -**R**₃-good.

Theorem (Miller 1981)

 \mathbb{E} is \aleph_1 -**R**₃-good.

Iterands except \mathbb{E}^N are μ_3 -**R**₃-good.

Theorem (Miller 1981)

 \mathbb{E} is \aleph_1 -**R**₃-good.

However

Theorem (Pawlikowski 1992)

There is a proper ω^{ω} -bounding poset forcing that \mathbb{E}^{V} adds a dominating real.

Definition (M. 2018arxiv-2019pub)

Let \mathbb{P} be a poset and F a (free) filter on ω .

(1) A set $Q \subseteq \mathbb{P}$ is *F*-linked if, for any sequence $\bar{p} = \langle p_n : n < \omega \rangle$ in Q, there is some $q \in \mathbb{P}$ forcing that $\{n < \omega : p_n \in G\} \in F^+$.

Definition (M. 2018arxiv-2019pub)

- (1) A set $Q \subseteq \mathbb{P}$ is *F-linked* if, for any sequence $\bar{p} = \langle p_n : n < \omega \rangle$ in Q, there is some $q \in \mathbb{P}$ forcing that $\{n < \omega : p_n \in G\} \in F^+$.
- (2) A set $Q \subseteq \mathbb{P}$ is *ultrafilter-linked (uf-linked)* if it is *F*-linked for any (ultra)filter *F*.

Definition (M. 2018arxiv-2019pub)

- (1) A set $Q \subseteq \mathbb{P}$ is *F-linked* if, for any sequence $\bar{p} = \langle p_n : n < \omega \rangle$ in Q, there is some $q \in \mathbb{P}$ forcing that $\{n < \omega : p_n \in G\} \in F^+$.
- (2) A set $Q \subseteq \mathbb{P}$ is *ultrafilter-linked (uf-linked)* if it is *F*-linked for any (ultra)filter *F*.
- (3) \mathbb{P} is μ -*F*-linked if $\mathbb{P} = \bigcup_{\alpha < \mu} Q_{\alpha}$ with Q_{α} *F*-linked in \mathbb{P} .

Definition (M. 2018arxiv-2019pub)

- (1) A set $Q \subseteq \mathbb{P}$ is *F*-linked if, for any sequence $\bar{p} = \langle p_n : n < \omega \rangle$ in Q, there is some $q \in \mathbb{P}$ forcing that $\{n < \omega : p_n \in G\} \in F^+$.
- (2) A set $Q \subseteq \mathbb{P}$ is *ultrafilter-linked (uf-linked)* if it is *F*-linked for any (ultra)filter *F*.
- (3) \mathbb{P} is μ -*F*-linked if $\mathbb{P} = \bigcup_{\alpha < \mu} Q_{\alpha}$ with Q_{α} *F*-linked in \mathbb{P} .
- (4) \mathbb{P} is θ -*F*-Knaster if $(\forall A \in [\mathbb{P}]^{\theta})(\exists Q \in [A]^{\theta}) Q$ is *F*-linked in \mathbb{P} .

- (1) A set $Q \subseteq \mathbb{P}$ is *F*-linked if, for any sequence $\bar{p} = \langle p_n : n < \omega \rangle$ in Q, there is some $q \in \mathbb{P}$ forcing that $\{n < \omega : p_n \in G\} \in F^+$.
- (2) A set $Q \subseteq \mathbb{P}$ is *ultrafilter-linked (uf-linked)* if it is *F*-linked for any (ultra)filter *F*.
- (3) \mathbb{P} is μ -*F*-linked if $\mathbb{P} = \bigcup_{\alpha < \mu} Q_{\alpha}$ with Q_{α} *F*-linked in \mathbb{P} .
- (4) \mathbb{P} is θ -*F*-Knaster if $(\forall A \in [\mathbb{P}]^{\theta})(\exists Q \in [A]^{\theta}) Q$ is *F*-linked in \mathbb{P} .
- (5) The notions μ -uf-linked and θ -uf-Knaster are defined similarly.

Let \mathbb{P} be a poset and F a (free) filter on ω .

- (1) A set $Q \subseteq \mathbb{P}$ is *F*-linked if, for any sequence $\bar{p} = \langle p_n : n < \omega \rangle$ in Q, there is some $q \in \mathbb{P}$ forcing that $\{n < \omega : p_n \in G\} \in F^+$.
- (2) A set $Q \subseteq \mathbb{P}$ is *ultrafilter-linked (uf-linked)* if it is *F*-linked for any (ultra)filter *F*.
- (3) \mathbb{P} is μ -*F*-linked if $\mathbb{P} = \bigcup_{\alpha < \mu} Q_{\alpha}$ with Q_{α} *F*-linked in \mathbb{P} .
- (4) \mathbb{P} is θ -*F*-Knaster if $(\forall A \in [\mathbb{P}]^{\theta})(\exists Q \in [A]^{\theta}) Q$ is *F*-linked in \mathbb{P} .
- (5) The notions μ -uf-linked and θ -uf-Knaster are defined similarly.

 $Fr := \{x \subseteq \omega : |\omega \smallsetminus x| < \aleph_0\}$ denotes the Frechet filter.

Let \mathbb{P} be a poset and F a (free) filter on ω .

- (1) A set $Q \subseteq \mathbb{P}$ is *F*-linked if, for any sequence $\bar{p} = \langle p_n : n < \omega \rangle$ in Q, there is some $q \in \mathbb{P}$ forcing that $\{n < \omega : p_n \in G\} \in F^+$.
- (2) A set $Q \subseteq \mathbb{P}$ is *ultrafilter-linked (uf-linked)* if it is *F*-linked for any (ultra)filter *F*.
- (3) \mathbb{P} is μ -*F*-linked if $\mathbb{P} = \bigcup_{\alpha < \mu} Q_{\alpha}$ with Q_{α} *F*-linked in \mathbb{P} .
- (4) \mathbb{P} is θ -*F*-Knaster if $(\forall A \in [\mathbb{P}]^{\theta})(\exists Q \in [A]^{\theta}) Q$ is *F*-linked in \mathbb{P} .
- (5) The notions μ -uf-linked and θ -uf-Knaster are defined similarly.

 $Fr := \{x \subseteq \omega : |\omega \smallsetminus x| < \aleph_0\}$ denotes the Frechet filter.

Lemma (M. 2018–2019)

If \mathbb{P} is ccc then $Q \subseteq \mathbb{P}$ is uf-linked iff it is Fr-linked.

A D > A A P >

For $x, y \in \omega^{\omega}$ denote $x \leq_n y$ iff $(\forall i \geq n) x(i) \leq y(i)$.

Lemma

If $Q \subseteq \mathbb{P}$ is Fr-linked and $\dot{y} \in \omega^{\omega}$ then

 $(\exists y \in \omega^{\omega})(\forall x \in \omega^{\omega})(\forall n < \omega) x \not\leq_{n} y \Rightarrow (\forall p \in Q) p \nvDash x \leq_{n} \dot{y}.$

For
$$x, y \in \omega^{\omega}$$
 denote $x \leq_n y$ iff $(\forall i \geq n) x(i) \leq y(i)$.

Lemma

If $Q \subseteq \mathbb{P}$ is Fr-linked and $\dot{y} \in \omega^{\omega}$ then

 $(\exists y \in \omega^{\omega})(\forall x \in \omega^{\omega})(\forall n < \omega) x \not\leq_{n} y \Rightarrow (\forall p \in Q) p \nvDash x \leq_{n} \dot{y}.$

Theorem

(M. 2018–2019) Any μ -Fr-linked poset is μ^+ -**R**₃-good.

For
$$x, y \in \omega^{\omega}$$
 denote $x \leq_n y$ iff $(\forall i \geq n) x(i) \leq y(i)$.

Lemma

If $Q \subseteq \mathbb{P}$ is Fr-linked and $\dot{y} \in \omega^{\omega}$ then

 $(\exists y \in \omega^{\omega})(\forall x \in \omega^{\omega})(\forall n < \omega) x \not\leq_{n} y \Rightarrow (\forall p \in Q) p \nvDash x \leq_{n} \dot{y}.$

Theorem

(M. 2018–2019) Any μ -Fr-linked poset is μ^+ -**R**₃-good. (Brendle & Cardona & M. 2018arxiv) For $\theta \ge \aleph_1$ regular, any θ -Fr-Knaster poset preserves θ -**R**₃-LCU sets.

For
$$x, y \in \omega^{\omega}$$
 denote $x \leq_n y$ iff $(\forall i \geq n) x(i) \leq y(i)$.

Lemma

If $Q \subseteq \mathbb{P}$ is Fr-linked and $\dot{y} \in \omega^{\omega}$ then

 $(\exists y \in \omega^{\omega})(\forall x \in \omega^{\omega})(\forall n < \omega) x \not\leq_{n} y \Rightarrow (\forall p \in Q) p \nvDash x \leq_{n} \dot{y}.$

Theorem

(M. 2018–2019) Any μ -Fr-linked poset is μ^+ -**R**₃-good. (Brendle & Cardona & M. 2018arxiv) For $\theta \ge \aleph_1$ regular, any θ -Fr-Knaster poset preserves θ -**R**₃-LCU sets.

GMS and GKS posets for the left side of Cichoń's diagram are θ -Fr-Knaster for any regular $\mu_3 \leq \theta \leq \mu_5$. In particular $LCU_{R_3}(\mathbb{P}, \theta)$ holds.

(日) (同) (日) (日)

The poset \mathbb{E} is defined as follows.

The poset \mathbb{E} is defined as follows.

Conditions: (s, φ) where $s \in \omega^{<\omega}$ and $\varphi : \omega \to [\omega]^{<\aleph_0}$ such that $(\exists m < \omega)(\forall i < \omega) |\varphi(i)| \le m$.

The poset \mathbb{E} is defined as follows.

Conditions: (s, φ) where $s \in \omega^{<\omega}$ and $\varphi : \omega \to [\omega]^{<\aleph_0}$ such that $(\exists m < \omega)(\forall i < \omega) |\varphi(i)| \le m.$ Order: $(s', \varphi') \le (s, \varphi)$ iff $s \subseteq s'$, $(\forall i) \varphi(i) \subseteq \varphi'(i)$ and $s'(i) \notin \varphi(i)$ for all $i \in |s'| \smallsetminus |s|.$

The poset \mathbb{E} is defined as follows.

Conditions:
$$(s, \varphi)$$
 where $s \in \omega^{<\omega}$ and $\varphi : \omega \to [\omega]^{<\aleph_0}$ such that $(\exists m < \omega)(\forall i < \omega) |\varphi(i)| \le m$.

Order: $(s', \varphi') \leq (s, \varphi)$ iff $s \subseteq s'$, $(\forall i) \varphi(i) \subseteq \varphi'(i)$ and $s'(i) \notin \varphi(i)$ for all $i \in |s'| \setminus |s|$.

Clearly \mathbb{E} is σ -centered and the generic real $e := \bigcup \{s : \exists \varphi((s, \varphi) \in G)\}$ is eventually different over the ground model (so it increases $\operatorname{non}(\mathcal{M})$).

Lemma (ess. Miller 1981)

 $E_{(t,m)} := \{(s, \varphi) \in \mathbb{E} : s = t, (\forall i) | \varphi(i) | \leq m\}$ is uf-linked. Hence \mathbb{E} is σ -uf-linked.

→ Ξ →

Image: Image:

Lemma (ess. Miller 1981)

 $E_{(t,m)} := \{(s, \varphi) \in \mathbb{E} : s = t, (\forall i) | \varphi(i) | \leq m\}$ is uf-linked. Hence \mathbb{E} is σ -uf-linked.

Lemma

Any complete Boolean algebra with a strictly-positive countable-additive measure is σ -Fr-linked. (b/c the set $\{b \in \mathbb{B} : \operatorname{meas}(b) \geq \frac{1}{n}\}$ is Fr-linked)

Lemma (ess. Miller 1981)

 $E_{(t,m)} := \{(s, \varphi) \in \mathbb{E} : s = t, (\forall i) | \varphi(i) | \leq m\}$ is uf-linked. Hence \mathbb{E} is σ -uf-linked.

Lemma

Any complete Boolean algebra with a strictly-positive countable-additive measure is σ -Fr-linked. (b/c the set $\{b \in \mathbb{B} : \operatorname{meas}(b) \geq \frac{1}{n}\}$ is Fr-linked)

Lemma

If $|\mathbb{P}| \leq \mu$ then \mathbb{P} is μ -uf-linked. (b/c singletons are uf-linked)

イロト イポト イヨト イヨト

Theorem (Brendle & Cardona & M. 2018)

Let $\aleph_1 \leq \mu_1 \leq \mu_2 \leq \mu_3 \leq \mu_4 \leq \mu_5$ be regular and $\mu_5 \leq \mu_6 = \mu_6^{<\mu_3}$. Then, there is a ccc poset forcing

Diego A. Mejía (Shizuoka University)

Preservation theorems

Oaxaca 2019 34 / 45

Diego A. Mejía (Shizuoka University)

Preservation theorems

Oaxaca 2019 34 / 45

 $V_{\alpha,\pi}$

 $V_{0,\pi}$

Diego A. Mejía (Shizuoka University)

Preservation theorems

Oaxaca 2019 34 / 45

Diego A. Mejía (Shizuoka University)

Preservation theorems

Oaxaca 2019 34 / 45

Assume $cf(\gamma) \ge \omega_1$ and $\mathbb{P}_{\gamma,\pi}$ is ccc.

Image: A math a math

Assume $cf(\gamma) \ge \omega_1$ and $\mathbb{P}_{\gamma,\pi}$ is ccc.

Blass & Shelah 1989, Brendle & Fischer 2011

 $\ \, {\bf 0} \ \, \alpha \leq \beta \ \, {\rm and} \ \, \xi \leq \eta \ \, {\rm implies} \ \, \mathbb{P}_{\alpha,\xi} \lessdot \mathbb{P}_{\beta,\eta}.$

Assume $cf(\gamma) \ge \omega_1$ and $\mathbb{P}_{\gamma,\pi}$ is ccc.

Blass & Shelah 1989, Brendle & Fischer 2011

② If $x \in \mathbb{R} \cap V_{\gamma,\xi}$ then $x \in V_{\alpha,\xi}$ for some $\alpha < \gamma$.

Assume $cf(\gamma) \ge \omega_1$, $\mathbb{P}_{\gamma,\pi}$ is ccc and $\mathbf{R} = \langle X, Y, R \rangle$ is Polish.

Assume $cf(\gamma) \ge \omega_1$, $\mathbb{P}_{\gamma,\pi}$ is ccc and $\mathbf{R} = \langle X, Y, R \rangle$ is Polish. Let $c_{\alpha} \in X \cap V_{\alpha+1,1}$ be the Cohen real over $V_{\alpha,1}$ added by $\mathbb{P}_{\alpha+1,1}$. Assume $cf(\gamma) \ge \omega_1$, $\mathbb{P}_{\gamma,\pi}$ is ccc and $\mathbf{R} = \langle X, Y, R \rangle$ is Polish. Let $c_{\alpha} \in X \cap V_{\alpha+1,1}$ be the Cohen real over $V_{\alpha,1}$ added by $\mathbb{P}_{\alpha+1,1}$. Clearly $(\forall y \in Y \cap V_{\alpha,1}) \neg (c_{\alpha}Ry)$. Assume $cf(\gamma) \ge \omega_1$, $\mathbb{P}_{\gamma,\pi}$ is ccc and $\mathbf{R} = \langle X, Y, R \rangle$ is Polish. Let $c_{\alpha} \in X \cap V_{\alpha+1,1}$ be the Cohen real over $V_{\alpha,1}$ added by $\mathbb{P}_{\alpha+1,1}$. Clearly $(\forall y \in Y \cap V_{\alpha,1}) \neg (c_{\alpha}Ry)$.

Brendle & Fischer 2011

 $(\forall y \in Y \cap V_{\alpha,\pi}) \neg (c_{\alpha}Ry).$

Assume $cf(\gamma) \ge \omega_1$, $\mathbb{P}_{\gamma,\pi}$ is ccc and $\mathbf{R} = \langle X, Y, R \rangle$ is Polish. Let $c_{\alpha} \in X \cap V_{\alpha+1,1}$ be the Cohen real over $V_{\alpha,1}$ added by $\mathbb{P}_{\alpha+1,1}$. Clearly $(\forall y \in Y \cap V_{\alpha,1}) \neg (c_{\alpha}Ry)$.

Brendle & Fischer 2011

- $(\forall y \in Y \cap V_{\alpha,\pi}) \neg (c_{\alpha}Ry).$ • $\{c_{\alpha} : \alpha < \gamma\}$ is γ -**R**-LCU.
- 3 LCU_R($\mathbb{P}_{\gamma,\pi},\gamma$).

First force with \mathbb{C}_{μ_6} , so $LCU_{\mathbf{R}_i}(\mathbb{C}, \theta)$ for any regular $\aleph_1 \leq \theta \leq \mu_6$.

First force with \mathbb{C}_{μ_6} , so $LCU_{\mathbf{R}_i}(\mathbb{C}, \theta)$ for any regular $\aleph_1 \leq \theta \leq \mu_6$. Afterwards

Height μ_5 , length $\pi := \mu_6 \mu_5 \mu_4$,

First force with \mathbb{C}_{μ_6} , so $\operatorname{LCU}_{\mathsf{R}_i}(\mathbb{C},\theta)$ for any regular $\aleph_1 \leq \theta \leq \mu_6$. Afterwards

Height μ_5 , length $\pi := \mu_6 \mu_5 \mu 4$, $\mathbb{S}_1 = \mathbb{LOC}$, $\mathbb{S}_2 = \text{random}$, $\mathbb{S}_3 = \text{Hechler}$, $|N_{\xi}| < \mu_i$ (i=1,2,3)

First force with \mathbb{C}_{μ_6} , so $\mathrm{LCU}_{\mathbf{R}_i}(\mathbb{C}, \theta)$ for any regular $\aleph_1 \leq \theta \leq \mu_6$. Afterwards

Height μ_5 , length $\pi := \mu_6 \mu_5 \mu 4$, $\mathbb{S}_1 = \mathbb{LOC}$, $\mathbb{S}_2 = \text{random}$, $\mathbb{S}_3 = \text{Hechler}$, $|N_{\xi}| < \mu_i$ (i=1,2,3)

• For i = 1, 2, 3, $\operatorname{COB}_{\mathbf{R}_i}(\mathbb{P}, S_i)$ where $\mu_i \leq \operatorname{cp}(S_i) \leq \operatorname{cf}(S_i) \leq |S_i| = \mu_6$, so $\mu_i \leq \mathfrak{b}(\mathbf{R}_i), \ \mathfrak{d}(\mathbf{R}_i) \leq \mu_6$.

- For i = 1, 2, 3, $\operatorname{COB}_{\mathbf{R}_i}(\mathbb{P}, S_i)$ where $\mu_i \leq \operatorname{cp}(S_i) \leq \operatorname{cf}(S_i) \leq |S_i| = \mu_6$, so $\mu_i \leq \mathfrak{b}(\mathbf{R}_i)$, $\mathfrak{d}(\mathbf{R}_i) \leq \mu_6$.
- $\textbf{S}_4 := \{\mu_6\rho : 0 < \rho < \mu_5\mu_4\}, \text{ ordered by } \mu_6\rho \leq S_4 \mu_6\rho' \text{ iff } \rho \leq \rho' \text{ and } \Delta(\mu_6\rho) \leq \Delta(\mu_6\rho'), \text{ satisfies } \mu_4 \leq \operatorname{cp}(S_4) \leq \operatorname{cf}(S_4) \leq |S_4| = \mu_5.$

- For i = 1, 2, 3, $\operatorname{COB}_{\mathbf{R}_i}(\mathbb{P}, S_i)$ where $\mu_i \leq \operatorname{cp}(S_i) \leq \operatorname{cf}(S_i) \leq |S_i| = \mu_6$, so $\mu_i \leq \mathfrak{b}(\mathbf{R}_i)$, $\mathfrak{d}(\mathbf{R}_i) \leq \mu_6$.
- $S_4 := \{\mu_6\rho : 0 < \rho < \mu_5\mu_4\}$, ordered by $\mu_6\rho \leq S_4 \mu_6\rho'$ iff $\rho \leq \rho'$ and $\Delta(\mu_6\rho) \leq \Delta(\mu_6\rho')$, satisfies $\mu_4 \leq \operatorname{cp}(S_4) \leq \operatorname{cf}(S_4) \leq |S_4| = \mu_5$.
- So For $\eta \in S_4$ let $e_{\eta} \in \omega^{\omega}$ be the generic ev. diff. real over $V_{\Delta(\eta),\eta}$.

- For i = 1, 2, 3, $\operatorname{COB}_{\mathbf{R}_i}(\mathbb{P}, S_i)$ where $\mu_i \leq \operatorname{cp}(S_i) \leq \operatorname{cf}(S_i) \leq |S_i| = \mu_6$, so $\mu_i \leq \mathfrak{b}(\mathbf{R}_i)$, $\mathfrak{d}(\mathbf{R}_i) \leq \mu_6$.
- $\textbf{O} \quad \textbf{S}_4 := \{\mu_6\rho : 0 < \rho < \mu_5\mu_4\}, \text{ ordered by } \mu_6\rho \leq S_4 \mu_6\rho' \text{ iff } \rho \leq \rho' \text{ and } \\ \Delta(\mu_6\rho) \leq \Delta(\mu_6\rho'), \text{ satisfies } \mu_4 \leq \operatorname{cp}(S_4) \leq \operatorname{cf}(S_4) \leq |S_4| = \mu_5.$
- For $\eta \in S_4$ let $e_\eta \in \omega^{\omega}$ be the generic ev. diff. real over $V_{\Delta(\eta),\eta}$. $M_\eta := \{x \in \omega^{\omega} : x \neq^* e_\eta\} \in \mathcal{M}, \{M_\eta : \eta \in S_4\}$ is S_4 - $\mathbf{C}_{\mathcal{M}}$ -COB,

- For i = 1, 2, 3, $\operatorname{COB}_{\mathbf{R}_i}(\mathbb{P}, S_i)$ where $\mu_i \leq \operatorname{cp}(S_i) \leq \operatorname{cf}(S_i) \leq |S_i| = \mu_6$, so $\mu_i \leq \mathfrak{b}(\mathbf{R}_i)$, $\mathfrak{d}(\mathbf{R}_i) \leq \mu_6$.
- $\textbf{S}_4 := \{\mu_6\rho : 0 < \rho < \mu_5\mu_4\}, \text{ ordered by } \mu_6\rho \leq S_4 \mu_6\rho' \text{ iff } \rho \leq \rho' \text{ and } \Delta(\mu_6\rho) \leq \Delta(\mu_6\rho'), \text{ satisfies } \mu_4 \leq \operatorname{cp}(S_4) \leq \operatorname{cf}(S_4) \leq |S_4| = \mu_5.$
- For $\eta \in S_4$ let $e_{\eta} \in \omega^{\omega}$ be the generic ev. diff. real over $V_{\Delta(\eta),\eta}$. $M_{\eta} := \{x \in \omega^{\omega} : x \neq^* e_{\eta}\} \in \mathcal{M}, \{M_{\eta} : \eta \in S_4\}$ is S_4 - $C_{\mathcal{M}}$ -COB, so $\operatorname{COB}_{\mathbf{R}_4}(\mathbb{P}, S_4)$ (b/c $C_{\mathcal{M}} \cong_{\mathrm{T}} \mathbf{R}_4$), hence $\mu_4 \leq \mathfrak{b}(\mathbf{R}_4)$ and $\mathfrak{d}(\mathbf{R}_4) \leq \mu_5$.

- For i = 1, 2, 3, $\operatorname{COB}_{\mathbf{R}_i}(\mathbb{P}, S_i)$ where $\mu_i \leq \operatorname{cp}(S_i) \leq \operatorname{cf}(S_i) \leq |S_i| = \mu_6$, so $\mu_i \leq \mathfrak{b}(\mathbf{R}_i)$, $\mathfrak{d}(\mathbf{R}_i) \leq \mu_6$.
- $\textbf{O} \quad \textbf{S}_4 := \{\mu_6\rho : 0 < \rho < \mu_5\mu_4\}, \text{ ordered by } \mu_6\rho \leq S_4 \mu_6\rho' \text{ iff } \rho \leq \rho' \text{ and } \\ \Delta(\mu_6\rho) \leq \Delta(\mu_6\rho'), \text{ satisfies } \mu_4 \leq \operatorname{cp}(S_4) \leq \operatorname{cf}(S_4) \leq |S_4| = \mu_5.$
- For $\eta \in S_4$ let $e_{\eta} \in \omega^{\omega}$ be the generic ev. diff. real over $V_{\Delta(\eta),\eta}$. $M_{\eta} := \{x \in \omega^{\omega} : x \neq^* e_{\eta}\} \in \mathcal{M}, \{M_{\eta} : \eta \in S_4\}$ is S_4 - $C_{\mathcal{M}}$ -COB, so $\operatorname{COB}_{\mathbf{R}_4}(\mathbb{P}, S_4)$ (b/c $C_{\mathcal{M}} \cong_{\mathrm{T}} \mathbf{R}_4$), hence $\mu_4 \leq \mathfrak{b}(\mathbf{R}_4)$ and $\mathfrak{d}(\mathbf{R}_4) \leq \mu_5$.

On the other hand

• For i = 1, 2 iterands are \mathbf{R}_i -good, so $LCU_{\mathbf{R}_i}(\mathbb{P}, \theta)$ holds for regular $\mu_i \leq \theta \leq \mu_6$, Hence $\mathfrak{b}(\mathbf{R}_i) \leq \mu_i$ and $\mu_6 \leq \mathfrak{d}(\mathbf{R}_i)$.

- For i = 1, 2, 3, $\operatorname{COB}_{\mathbf{R}_i}(\mathbb{P}, S_i)$ where $\mu_i \leq \operatorname{cp}(S_i) \leq \operatorname{cf}(S_i) \leq |S_i| = \mu_6$, so $\mu_i \leq \mathfrak{b}(\mathbf{R}_i)$, $\mathfrak{d}(\mathbf{R}_i) \leq \mu_6$.
- $\textbf{S}_4 := \{\mu_6\rho : 0 < \rho < \mu_5\mu_4\}, \text{ ordered by } \mu_6\rho \leq S_4 \mu_6\rho' \text{ iff } \rho \leq \rho' \text{ and } \Delta(\mu_6\rho) \leq \Delta(\mu_6\rho'), \text{ satisfies } \mu_4 \leq \operatorname{cp}(S_4) \leq \operatorname{cf}(S_4) \leq |S_4| = \mu_5.$
- For $\eta \in S_4$ let $e_{\eta} \in \omega^{\omega}$ be the generic ev. diff. real over $V_{\Delta(\eta),\eta}$. $M_{\eta} := \{x \in \omega^{\omega} : x \neq^* e_{\eta}\} \in \mathcal{M}, \{M_{\eta} : \eta \in S_4\}$ is S_4 - $C_{\mathcal{M}}$ -COB, so $\operatorname{COB}_{\mathbf{R}_4}(\mathbb{P}, S_4)$ (b/c $C_{\mathcal{M}} \cong_{\mathrm{T}} \mathbf{R}_4$), hence $\mu_4 \leq \mathfrak{b}(\mathbf{R}_4)$ and $\mathfrak{d}(\mathbf{R}_4) \leq \mu_5$.

On the other hand

- For i = 1, 2 iterands are \mathbf{R}_i -good, so $\mathrm{LCU}_{\mathbf{R}_i}(\mathbb{P}, \theta)$ holds for regular $\mu_i \leq \theta \leq \mu_6$, Hence $\mathfrak{b}(\mathbf{R}_i) \leq \mu_i$ and $\mu_6 \leq \mathfrak{d}(\mathbf{R}_i)$.
- Since $cf(\pi) = \mu_4$, $LCU_{R_4}(\mathbb{P}, \mu_4)$ holds, so $\mathfrak{b}(R_4) \le \mu_4$.

- For i = 1, 2, 3, $\operatorname{COB}_{\mathbf{R}_i}(\mathbb{P}, S_i)$ where $\mu_i \leq \operatorname{cp}(S_i) \leq \operatorname{cf}(S_i) \leq |S_i| = \mu_6$, so $\mu_i \leq \mathfrak{b}(\mathbf{R}_i), \ \mathfrak{d}(\mathbf{R}_i) \leq \mu_6$.
- $\textbf{S}_4 := \{\mu_6\rho : 0 < \rho < \mu_5\mu_4\}, \text{ ordered by } \mu_6\rho \leq S_4 \mu_6\rho' \text{ iff } \rho \leq \rho' \text{ and } \Delta(\mu_6\rho) \leq \Delta(\mu_6\rho'), \text{ satisfies } \mu_4 \leq \operatorname{cp}(S_4) \leq \operatorname{cf}(S_4) \leq |S_4| = \mu_5.$
- For $\eta \in S_4$ let $e_{\eta} \in \omega^{\omega}$ be the generic ev. diff. real over $V_{\Delta(\eta),\eta}$. $M_{\eta} := \{x \in \omega^{\omega} : x \neq^* e_{\eta}\} \in \mathcal{M}, \{M_{\eta} : \eta \in S_4\}$ is S_4 - $C_{\mathcal{M}}$ -COB, so $\operatorname{COB}_{\mathbf{R}_4}(\mathbb{P}, S_4)$ (b/c $C_{\mathcal{M}} \cong_{\mathrm{T}} \mathbf{R}_4$), hence $\mu_4 \leq \mathfrak{b}(\mathbf{R}_4)$ and $\mathfrak{d}(\mathbf{R}_4) \leq \mu_5$.

On the other hand

- For i = 1, 2 iterands are \mathbf{R}_i -good, so $LCU_{\mathbf{R}_i}(\mathbb{P}, \theta)$ holds for regular $\mu_i \leq \theta \leq \mu_6$, Hence $\mathfrak{b}(\mathbf{R}_i) \leq \mu_i$ and $\mu_6 \leq \mathfrak{d}(\mathbf{R}_i)$.
- Since $cf(\pi) = \mu_4$, $LCU_{R_4}(\mathbb{P}, \mu_4)$ holds, so $\mathfrak{b}(R_4) \le \mu_4$.
- LCU_{R₄}(\mathbb{P}, μ_5) (by Preservation 2), so $\mu_5 \leq \mathfrak{d}(\mathbf{R}_4)$

It remains to show $\mathfrak{b}(\mathbf{R}_3) \leq \mu_3$ and $\mu_6 \leq \mathfrak{d}(\mathbf{R}_3)$.

- (A 🖓

It remains to show $\mathfrak{b}(\mathbf{R}_3) \leq \mu_3$ and $\mu_6 \leq \mathfrak{d}(\mathbf{R}_3)$. Enough to show $\mathrm{LCU}_{\mathbf{R}_3}(\mathbb{P}, \theta)$ for any regular $\mu_3 \leq \theta \leq \mu_6$. It remains to show $\mathfrak{b}(\mathbf{R}_3) \leq \mu_3$ and $\mu_6 \leq \mathfrak{d}(\mathbf{R}_3)$. Enough to show $\mathrm{LCU}_{\mathbf{R}_3}(\mathbb{P}, \theta)$ for any regular $\mu_3 \leq \theta \leq \mu_6$. Recall we have $\mathrm{LCU}_{\mathbf{R}_3}(\mathbb{C}_{\mu_6}, \theta)$. It remains to show $\mathfrak{b}(\mathbf{R}_3) \leq \mu_3$ and $\mu_6 \leq \mathfrak{d}(\mathbf{R}_3)$. Enough to show $\mathrm{LCU}_{\mathbf{R}_3}(\mathbb{P}, \theta)$ for any regular $\mu_3 \leq \theta \leq \mu_6$. Recall we have $\mathrm{LCU}_{\mathbf{R}_3}(\mathbb{C}_{\mu_6}, \theta)$. Also

> For any $0 < \xi < \pi$, $V_{\Delta(\xi),\xi} \models "\mathbb{Q}_{\xi}^*$ is $<\mu_3$ -uf-linked". (though it may not be true in $V_{\mu_5,\xi}$)

It remains to show $\mathfrak{b}(\mathbf{R}_3) \leq \mu_3$ and $\mu_6 \leq \mathfrak{d}(\mathbf{R}_3)$. Enough to show $\mathrm{LCU}_{\mathbf{R}_3}(\mathbb{P}, \theta)$ for any regular $\mu_3 \leq \theta \leq \mu_6$. Recall we have $\mathrm{LCU}_{\mathbf{R}_3}(\mathbb{C}_{\mu_6}, \theta)$. Also

> For any $0 < \xi < \pi$, $V_{\Delta(\xi),\xi} \models "\mathbb{Q}_{\xi}^*$ is $<\mu_3$ -uf-linked". (though it may not be true in $V_{\mu_5,\xi}$)

We are done if we show that the matrix is μ_3 -uf-Knaster.

Let $\kappa \geq \aleph_1$ be regular. If \mathbb{P} is a simple matrix iteration such that $V_{\Delta(\xi),\xi} \models ``\mathbb{Q}^*_{\xi}$ is $<\kappa$ -uf-linked" for any $0 < \xi < \pi$, then \mathbb{P} is κ -uf-Knaster.

Let $\kappa \geq \aleph_1$ be regular. If \mathbb{P} is a simple matrix iteration such that $V_{\Delta(\xi),\xi} \models ``\mathbb{Q}^*_{\xi}$ is $<\kappa$ -uf-linked'' for any $0 < \xi < \pi$, then \mathbb{P} is κ -uf-Knaster.

 μ -Fr-linked $\Rightarrow \mu$ -Fin-cc (union of μ -many Fin-cc subsets) ($Q \subseteq \mathbb{Q}$ is Fin-cc if ($\forall A \subseteq Q$) (A antichain in $\mathbb{P} \Rightarrow |A| < \aleph_0$))

Let $\kappa \geq \aleph_1$ be regular. If \mathbb{P} is a simple matrix iteration such that $V_{\Delta(\xi),\xi} \models ``\mathbb{Q}^*_{\xi}$ is $<\kappa$ -uf-linked'' for any $0 < \xi < \pi$, then \mathbb{P} is κ -uf-Knaster.

 $\begin{array}{l} \mu\text{-}\mathrm{Fr}\text{-}\mathrm{linked} \ \Rightarrow \ \mu\text{-}\mathrm{Fin\text{-}cc} \ (\mathrm{union} \ \mathrm{of} \ \mu\text{-}\mathrm{many} \ \mathrm{Fin\text{-}cc} \ \mathrm{subsets}) \\ (Q \subseteq \mathbb{Q} \ \mathrm{is} \ \mathrm{Fin\text{-}cc} \ \mathrm{if} \ (\forall A \subseteq Q) \ (A \ \mathrm{antichain} \ \mathrm{in} \ \mathbb{P} \ \Rightarrow \ |A| < \aleph_0)) \\ \mathrm{So} \ V_{\gamma,\xi} \models ``\mathbb{Q}_{\xi}^* \ \mathrm{is} < \kappa\text{-}\mathrm{Fin\text{-}cc}'' \ \mathrm{,} \ \mathrm{hence} \ \kappa\text{-}\mathrm{cc}. \ \mathrm{Thus} \ \mathbb{P} \ \mathrm{is} \ \kappa\text{-}\mathrm{cc}. \end{array}$

Let $\kappa \geq \aleph_1$ be regular. If \mathbb{P} is a simple matrix iteration such that $V_{\Delta(\xi),\xi} \models ``\mathbb{Q}^*_{\xi}$ is $<\kappa$ -uf-linked" for any $0 < \xi < \pi$, then \mathbb{P} is κ -uf-Knaster.

 $\mu\text{-Fr-linked} \Rightarrow \mu\text{-Fin-cc} \text{ (union of }\mu\text{-many Fin-cc subsets)}$ $(Q \subseteq \mathbb{Q} \text{ is Fin-cc if } (\forall A \subseteq Q) \text{ (A antichain in } \mathbb{P} \Rightarrow |A| < \aleph_0))$ So $V_{\gamma,\xi} \models ``\mathbb{Q}_{\xi}^* \text{ is } < \kappa\text{-Fin-cc}'' \text{, hence }\kappa\text{-cc. Thus } \mathbb{P} \text{ is }\kappa\text{-cc.}$

For each $0 < \xi < \pi$ there is some cardinal $\theta_{\xi} < \kappa$ and $\mathbb{P}_{\Delta(\xi),\xi}$ -names $\langle \dot{Q}_{\xi,\zeta} : \zeta < \theta_{\xi} \rangle$ of uf-linked subsets of $\dot{\mathbb{Q}}^*$ s.t. $\dot{\mathbb{Q}}^*_{\xi} = \bigcup_{\zeta < \theta_{\xi}} \dot{Q}_{\xi,\zeta}$.

Say that $B \subseteq \mathbb{P}$ is uniform if

● $\{\operatorname{dom} p : p \in B\}$ forms a Δ -system with root r^* .

Say that $B \subseteq \mathbb{P}$ is uniform if

- **(** $dom p : p \in B$ } forms a △-system with root r^* .
- $(\exists f^* \in \prod_{\xi \in r^*} \theta_{\xi}) (\forall p, p' \in B) f_p \upharpoonright r^* = f^*.$

Say that $B \subseteq \mathbb{P}$ is uniform if

($dom p : p \in B$ } forms a △-system with root r^* .

$$(\exists f^* \in \prod_{\xi \in r^*} \theta_{\xi}) (\forall p, p' \in B) f_p \upharpoonright r^* = f^*.$$

Main Lemma

If D is a non-principal ultrafilter on ω and $\langle p_n : n < \omega \rangle \subseteq \mathbb{P}$ is uniform, then, in $V^{\mathbb{P}}$, there is some ultrafilter $D^* \supseteq D$ such that $\{n < \omega : p_n \in G_{\mathbb{P}}\} \in D^*$.

Image: Image:

There is some uniform $B \in [A]^{\kappa}$ (by the Δ -system lemma).

There is some uniform $B \in [A]^{\kappa}$ (by the Δ -system lemma).

Claim

B is uf-linked.

There is some uniform $B \in [A]^{\kappa}$ (by the Δ -system lemma).

Claim

B is uf-linked.

Fix an uf D and let $\bar{p} = \langle p_n : n < \omega \rangle$.

There is some uniform $B \in [A]^{\kappa}$ (by the Δ -system lemma).

Claim

B is uf-linked.

Fix an uf D and let $\bar{p} = \langle p_n : n < \omega \rangle$. Since \bar{p} is uniform, \mathbb{P} forces that $\{n < \omega : p_n \in \dot{G}\} \in D^*$ for some uf $D^* \supseteq D$,

There is some uniform $B \in [A]^{\kappa}$ (by the Δ -system lemma).

Claim

B is uf-linked.

Fix an uf D and let $\bar{p} = \langle p_n : n < \omega \rangle$. Since \bar{p} is uniform, \mathbb{P} forces that $\{n < \omega : p_n \in \dot{G}\} \in D^*$ for some uf $D^* \supseteq D$, so $\{n < \omega : p_n \in \dot{G}\} \in D^+$.

There is some uniform $B \in [A]^{\kappa}$ (by the Δ -system lemma).

Claim

B is uf-linked.

Fix an uf D and let $\bar{p} = \langle p_n : n < \omega \rangle$. Since \bar{p} is uniform, \mathbb{P} forces that $\{n < \omega : p_n \in \dot{G}\} \in D^*$ for some uf $D^* \supseteq D$, so $\{n < \omega : p_n \in \dot{G}\} \in D^+$.

Hence B is D-linked.

Let $\aleph_1 \leq \mu_1 \leq \mu_2 \leq \mu_3 \leq \mu_4$ be regular cardinals, $\mu_4 \leq \mu_5 = \mu_5^{<\mu_2}$. Then, there is a ccc poset forcing

Theorem (Kellner & Tănasie & Shelah 2018arxiv-2019pub)

Let $\aleph_1 \leq \mu_1 \leq \mu_2 = \mu_2^{<\mu_2} < \mu_3 \leq \mu_4$ be regular cardinals, $\mu_4^{\aleph_0} < \mu_5 = \mu_5^{<\mu_4}$, and $(\forall \nu < \mu_3) \nu^{\aleph_0} < \mu_3$. Then, there is a ccc poset forcing

Fix $A \subseteq [\omega]^{\aleph_0}$.

Image: A math a math

Fix
$$A \subseteq [\omega]^{\aleph_0}$$
. Define $\mathbf{R}_{\mathrm{md}}(A) := \langle [\omega]^{\aleph_0}, \omega^{\omega \times [A]^{<\aleph_0}}, R_{\mathrm{md}} \rangle$ by
 $xR_{\mathrm{md}}h$ iff $(\exists n)(\forall i \ge n)(\forall F \in [A]^{<\aleph_0})[n, h(n, F)) \setminus \bigcup F \nsubseteq x$

Fix
$$A \subseteq [\omega]^{\aleph_0}$$
. Define $\mathbf{R}_{\mathrm{md}}(A) := \langle [\omega]^{\aleph_0}, \omega^{\omega \times [A]^{<\aleph_0}}, R_{\mathrm{md}} \rangle$ by

 $xR_{\mathrm{md}}h$ iff $(\exists n)(\forall i \geq n)(\forall F \in [A]^{<\aleph_0})[n, h(n, F)) \setminus \bigcup F \nsubseteq x$

Theorem (Brendle & Fischer 2011)

If A is an $\mathbf{R}_{md}(A)$ -unbounded a.d. family, then A is mad.

Fix
$$A \subseteq [\omega]^{\aleph_0}$$
. Define $\mathbf{R}_{\mathrm{md}}(A) := \langle [\omega]^{\aleph_0}, \omega^{\omega \times [A]^{<\aleph_0}}, R_{\mathrm{md}} \rangle$ by

 $xR_{\mathrm{md}}h \text{ iff } (\exists n)(\forall i \geq n)(\forall F \in [A]^{<\aleph_0})[n, h(n, F)) \smallsetminus \bigcup F \nsubseteq x$

Theorem (Brendle & Fischer 2011)

If A is an $\mathbf{R}_{md}(A)$ -unbounded a.d. family, then A is mad.

Theorem (Brendle & Cardona & M. 2018)

If $\kappa \geq \aleph_1$ is regular, \mathbb{P} is κ -Fr-Knaster and A is κ -R_{md}(A)-LCU, then \mathbb{P} forces that A is still κ -R_{md}(A)-LCU.