Preservation theorems for finite support iterations

Diego A. Mejía
diego.mejia@shizuoka.ac.jp
Shizuoka University

Set Theory of the Reals

Oaxaca, México
August 5th, 2019

Cardinal characteristics associated with an ideal

Let \mathcal{I} be an ideal of subsets of X.

Cardinal characteristics associated with an ideal

Let \mathcal{I} be an ideal of subsets of X.
Additivity of $\mathcal{I} . \operatorname{add}(\mathcal{I})=\min \{|\mathcal{F}|: \mathcal{F} \subseteq \mathcal{I}, \bigcup \mathcal{F} \notin \mathcal{I}\}$.

Cardinal characteristics associated with an ideal

Let \mathcal{I} be an ideal of subsets of X.
Additivity of $\mathcal{I} . \operatorname{add}(\mathcal{I})=\min \{|\mathcal{F}|: \mathcal{F} \subseteq \mathcal{I}, \bigcup \mathcal{F} \notin \mathcal{I}\}$.
Covering of $\mathcal{I} \cdot \operatorname{cov}(\mathcal{I})=\min \{|\mathcal{F}|: \mathcal{F} \subseteq \mathcal{I}, \bigcup \mathcal{F}=X\}$.

Cardinal characteristics associated with an ideal

Let \mathcal{I} be an ideal of subsets of X.
Additivity of $\mathcal{I} . \operatorname{add}(\mathcal{I})=\min \{|\mathcal{F}|: \mathcal{F} \subseteq \mathcal{I}, \bigcup \mathcal{F} \notin \mathcal{I}\}$.
Covering of $\mathcal{I} . \operatorname{cov}(\mathcal{I})=\min \{|\mathcal{F}|: \mathcal{F} \subseteq \mathcal{I}, \cup \mathcal{F}=X\}$.
Uniformity of $\mathcal{I} . \operatorname{non}(\mathcal{I})=\min \{|Z|: Z \subseteq X, Z \notin \mathcal{I}\}$.

Cardinal characteristics associated with an ideal

Let \mathcal{I} be an ideal of subsets of X.
Additivity of $\mathcal{I} . \operatorname{add}(\mathcal{I})=\min \{|\mathcal{F}|: \mathcal{F} \subseteq \mathcal{I}, \bigcup \mathcal{F} \notin \mathcal{I}\}$.
Covering of $\mathcal{I} \cdot \operatorname{cov}(\mathcal{I})=\min \{|\mathcal{F}|: \mathcal{F} \subseteq \mathcal{I}, \bigcup \mathcal{F}=X\}$.
Uniformity of $\mathcal{I} . \operatorname{non}(\mathcal{I})=\min \{|Z|: Z \subseteq X, Z \notin \mathcal{I}\}$.
Cofinality of $\mathcal{I} . \operatorname{cof}(\mathcal{I})=\min \{|\mathcal{F}|: \mathcal{F} \subseteq \mathcal{I},(\forall A \in \mathcal{I})(\exists B \in \mathcal{F}) A \subseteq B$.

Cardinal characteristics associated with an ideal

Let \mathcal{I} be an ideal of subsets of X.
Additivity of $\mathcal{I} . \operatorname{add}(\mathcal{I})=\min \{|\mathcal{F}|: \mathcal{F} \subseteq \mathcal{I}, \bigcup \mathcal{F} \notin \mathcal{I}\}$.
Covering of $\mathcal{I} \cdot \operatorname{cov}(\mathcal{I})=\min \{|\mathcal{F}|: \mathcal{F} \subseteq \mathcal{I}, \bigcup \mathcal{F}=X\}$.
Uniformity of $\mathcal{I} . \operatorname{non}(\mathcal{I})=\min \{|Z|: Z \subseteq X, Z \notin \mathcal{I}\}$.
Cofinality of $\mathcal{I} . \operatorname{cof}(\mathcal{I})=\min \{|\mathcal{F}|: \mathcal{F} \subseteq \mathcal{I},(\forall A \in \mathcal{I})(\exists B \in \mathcal{F}) A \subseteq B$.
\mathcal{M} : the ideal of first category subsets of \mathbb{R}.
\mathcal{N} : the ideal of Lebesgue measure zero subsets of \mathbb{R}.

Some cardinal characteristics

For $f, g \in \omega^{\omega}$ denote

$$
f \leq^{*} g(f \text { is dominated by } g) \text { iff }(\exists m)(\forall n \geq m) f(n) \leq g(n)
$$

Some cardinal characteristics

For $f, g \in \omega^{\omega}$ denote

$$
f \leq^{*} g(f \text { is dominated by } g) \text { iff }(\exists m)(\forall n \geq m) f(n) \leq g(n)
$$

Consider

$$
\begin{aligned}
& \mathfrak{b}=\min \left\{|F|: F \subseteq \omega^{\omega} \text { and } \neg\left(\exists g \in \omega^{\omega}\right)(\forall f \in F) f \leq^{*} g\right\} \\
& \mathfrak{d}=\min \left\{|D|: D \subseteq \omega^{\omega} \text { and }\left(\forall f \in \omega^{\omega}\right)(\exists g \in D) f \leq^{*} g\right\} \\
& \mathfrak{c}=2^{\aleph_{0}}
\end{aligned}
$$

Cichon's diagram

Inequalities: Bartoszyński, Fremlin, Miller, Rothberger, Truss. Completeness: Bartoszyński, Judah, Miller, Shelah.

Also $\operatorname{add}(\mathcal{M})=\min \{\mathfrak{b}, \operatorname{cov}(\mathcal{M})\}$ and $\operatorname{cof}(\mathcal{M})=\max \{\mathfrak{d}, \operatorname{non}(\mathcal{M})\}$.

Objective

Techniques to obtain models where many cardinal characteristics assume pairwise different values.

Objective

Techniques to obtain models where many cardinal characteristics assume pairwise different values.

Context

Finite support iteration of ccc posets $(\operatorname{non}(\mathcal{M}) \leq \operatorname{cf}($ length $) \leq \operatorname{cov}(\mathcal{M}))$.

Objective

Techniques to obtain models where many cardinal characteristics assume pairwise different values.

Context

Finite support iteration of ccc posets $(\operatorname{non}(\mathcal{M}) \leq \operatorname{cf}($ length $) \leq \operatorname{cov}(\mathcal{M}))$.

Playground

Cichoń's diagram (just the left side).

General framework

Relational system
 A relational system is a triplet $\mathbf{R}=\langle X, Y, R\rangle$ where $R \subseteq X \times Y$.

General framework

Relational system

A relational system is a triplet $\mathbf{R}=\langle X, Y, R\rangle$ where $R \subseteq X \times Y$.
(1) $B \subseteq X$ is R-bounded if $(\exists y \in Y)(\forall x \in B) x R y$.

General framework

Relational system

A relational system is a triplet $\mathbf{R}=\langle X, Y, R\rangle$ where $R \subseteq X \times Y$.
(1) $B \subseteq X$ is R-bounded if $(\exists y \in Y)(\forall x \in B) x R y$.
(2) $D \subseteq Y$ is R-dominating if $(\forall x \in X)(\exists y \in D) x R y$.

General framework

Relational system

A relational system is a triplet $\mathbf{R}=\langle X, Y, R\rangle$ where $R \subseteq X \times Y$.
(1) $B \subseteq X$ is R -bounded if $(\exists y \in Y)(\forall x \in B) x R y$.
(2) $D \subseteq Y$ is R -dominating if $(\forall x \in X)(\exists y \in D) x R y$.
(-) $\mathfrak{b}(\mathbf{R}):=\min \{|F|: F \subseteq X$ is \mathbf{R}-unbounded $\}$.

General framework

Relational system

A relational system is a triplet $\mathbf{R}=\langle X, Y, R\rangle$ where $R \subseteq X \times Y$.
(1) $B \subseteq X$ is R-bounded if $(\exists y \in Y)(\forall x \in B) x R y$.
(2) $D \subseteq Y$ is R-dominating if $(\forall x \in X)(\exists y \in D) x R y$.
(3) $\mathfrak{b}(\mathbf{R}):=\min \{|F|: F \subseteq X$ is \mathbf{R}-unbounded $\}$.
(9) $\mathfrak{d}(\mathbf{R}):=\min \{|D|: D \subseteq Y$ is \mathbf{R}-dominating $\}$.

Examples

(1) Let $\langle S, \leq\rangle$ be a directed set.

Examples

(1) Let $\langle S, \leq\rangle$ be a directed set. As a relational system, $S=\langle S, S, \leq\rangle, \operatorname{cp}(S):=\mathfrak{b}(S), \operatorname{cf}(S)=\mathfrak{d}(S)$.

Examples

(1) Let $\langle S, \leq\rangle$ be a directed set. As a relational system, $S=\langle S, S, \leq\rangle, \operatorname{cp}(S):=\mathfrak{b}(S), \operatorname{cf}(S)=\mathfrak{d}(S)$.
Recall: If S has no maximum then $\mathrm{cp}(S)$ is regular and $\operatorname{cp}(S) \leq \operatorname{cf}(S)$.

Examples

(1) Let $\langle S, \leq\rangle$ be a directed set. As a relational system, $S=\langle S, S, \leq\rangle, \operatorname{cp}(S):=\mathfrak{b}(S), \operatorname{cf}(S)=\mathfrak{d}(S)$.
Recall: If S has no maximum then $\mathrm{cp}(S)$ is regular and $\operatorname{cp}(S) \leq \operatorname{cf}(S)$.
(2) If L is a linear order without maximum then $\operatorname{cp}(L)=\operatorname{cf}(L)$.

Examples

(1) Let $\langle S, \leq\rangle$ be a directed set. As a relational system, $S=\langle S, S, \leq\rangle, \operatorname{cp}(S):=\mathfrak{b}(S), \operatorname{cf}(S)=\mathfrak{d}(S)$.
Recall: If S has no maximum then $\mathrm{cp}(S)$ is regular and $\operatorname{cp}(S) \leq \operatorname{cf}(S)$.
(2) If L is a linear order without maximum then $\operatorname{cp}(L)=\operatorname{cf}(L)$.
(3) $\left\langle\omega^{\omega}, \leq^{*}\right\rangle$ is directed, $\mathfrak{b}=\mathfrak{b}\left(\omega^{\omega}\right), \mathfrak{d}=\mathfrak{d}\left(\omega^{\omega}\right)$.

Examples

(1) Let $\langle S, \leq\rangle$ be a directed set. As a relational system, $S=\langle S, S, \leq\rangle, \operatorname{cp}(S):=\mathfrak{b}(S), \operatorname{cf}(S)=\mathfrak{d}(S)$.
Recall: If S has no maximum then $\mathrm{cp}(S)$ is regular and $\operatorname{cp}(S) \leq \operatorname{cf}(S)$.
(2) If L is a linear order without maximum then $\operatorname{cp}(L)=\operatorname{cf}(L)$.
(3) $\left\langle\omega^{\omega}, \leq^{*}\right\rangle$ is directed, $\mathfrak{b}=\mathfrak{b}\left(\omega^{\omega}\right), \mathfrak{d}=\mathfrak{d}\left(\omega^{\omega}\right)$.
(9) Id $:=\left\langle\omega^{\omega}, \omega^{\omega},=\right\rangle, \mathfrak{b}(\mathbf{I d})=2, \mathfrak{d}(\mathbf{I d})=\mathfrak{c}$.

Examples

(1) Let $\langle S, \leq\rangle$ be a directed set. As a relational system, $S=\langle S, S, \leq\rangle, \operatorname{cp}(S):=\mathfrak{b}(S), \operatorname{cf}(S)=\mathfrak{d}(S)$.
Recall: If S has no maximum then $\operatorname{cp}(S)$ is regular and $\operatorname{cp}(S) \leq \operatorname{cf}(S)$.
(2) If L is a linear order without maximum then $\operatorname{cp}(L)=\operatorname{cf}(L)$.
(3) $\left\langle\omega^{\omega}, \leq^{*}\right\rangle$ is directed, $\mathfrak{b}=\mathfrak{b}\left(\omega^{\omega}\right), \mathfrak{d}=\mathfrak{d}\left(\omega^{\omega}\right)$.
(9) Id $:=\left\langle\omega^{\omega}, \omega^{\omega},=\right\rangle, \mathfrak{b}(\mathbf{I d})=2, \mathfrak{d}(\mathbf{I d})=\mathfrak{c}$.

Fix an ideal \mathcal{I} on a set X.
(6) $\langle\mathcal{I}, \subseteq\rangle$ is directed, $\mathfrak{b}(\mathcal{I})=\operatorname{add}(\mathcal{I}), \mathfrak{d}(\mathcal{I})=\operatorname{cof}(\mathcal{I})$.

Examples

(1) Let $\langle S, \leq\rangle$ be a directed set. As a relational system, $S=\langle S, S, \leq\rangle, \operatorname{cp}(S):=\mathfrak{b}(S), \operatorname{cf}(S)=\mathfrak{d}(S)$.
Recall: If S has no maximum then $\operatorname{cp}(S)$ is regular and $\operatorname{cp}(S) \leq \operatorname{cf}(S)$.
(2) If L is a linear order without maximum then $\operatorname{cp}(L)=\operatorname{cf}(L)$.
(3) $\left\langle\omega^{\omega}, \leq^{*}\right\rangle$ is directed, $\mathfrak{b}=\mathfrak{b}\left(\omega^{\omega}\right), \mathfrak{d}=\mathfrak{d}\left(\omega^{\omega}\right)$.
(9) Id $:=\left\langle\omega^{\omega}, \omega^{\omega},=\right\rangle, \mathfrak{b}(\mathbf{I d})=2, \mathfrak{d}(\mathbf{I d})=\mathfrak{c}$.

Fix an ideal \mathcal{I} on a set X.
(5) $\langle\mathcal{I}, \subseteq\rangle$ is directed, $\mathfrak{b}(\mathcal{I})=\operatorname{add}(\mathcal{I}), \mathfrak{d}(\mathcal{I})=\operatorname{cof}(\mathcal{I})$.
(0) $\mathbf{C}_{\mathcal{I}}:=\langle X, \mathcal{I}, \in\rangle, \mathfrak{b}\left(\mathbf{C}_{\mathcal{I}}\right)=\operatorname{non}(\mathcal{I}), \mathfrak{d}\left(\mathbf{C}_{\mathcal{I}}\right)=\operatorname{cov}(\mathcal{I})$.

Dual and Tukey connections

If $\mathbf{R}=\langle X, Y, R\rangle$, denote $\mathbf{R}^{\perp}=\left\langle Y, X, R^{\perp}\right\rangle$ where

$$
y R^{\perp} x \text { iff } \neg(x R y)
$$

Dual and Tukey connections

If $\mathbf{R}=\langle X, Y, R\rangle$, denote $\mathbf{R}^{\perp}=\left\langle Y, X, R^{\perp}\right\rangle$ where

$$
y R^{\perp} x \text { iff } \neg(x R y) .
$$

Note that $\mathfrak{b}\left(\mathbf{R}^{\perp}\right)=\mathfrak{d}(\mathbf{R})$ and $\mathfrak{d}\left(\mathbf{R}^{\perp}\right)=\mathfrak{b}(\mathbf{R})$.

Dual and Tukey connections

If $\mathbf{R}=\langle X, Y, R\rangle$, denote $\mathbf{R}^{\perp}=\left\langle Y, X, R^{\perp}\right\rangle$ where

$$
y R^{\perp} x \text { iff } \neg(x R y) .
$$

Note that $\mathfrak{b}\left(\mathbf{R}^{\perp}\right)=\mathfrak{d}(\mathbf{R})$ and $\mathfrak{d}\left(\mathbf{R}^{\perp}\right)=\mathfrak{b}(\mathbf{R})$.
Let $\mathbf{R}^{\prime}=\left\langle X^{\prime}, Y^{\prime}, R^{\prime}\right\rangle$. A pair $(F, G): \mathbf{R} \rightarrow \mathbf{R}^{\prime}$ is a Tukey connection if $F: X \rightarrow X^{\prime}, \quad G: Y^{\prime} \rightarrow Y, \quad(\forall x \in X)\left(\forall y^{\prime} \in Y^{\prime}\right) F(x) R^{\prime} y^{\prime} \Rightarrow x R G(y)$.

Dual and Tukey connections

If $\mathbf{R}=\langle X, Y, R\rangle$, denote $\mathbf{R}^{\perp}=\left\langle Y, X, R^{\perp}\right\rangle$ where

$$
y R^{\perp} x \text { iff } \neg(x R y) .
$$

Note that $\mathfrak{b}\left(\mathbf{R}^{\perp}\right)=\mathfrak{d}(\mathbf{R})$ and $\mathfrak{d}\left(\mathbf{R}^{\perp}\right)=\mathfrak{b}(\mathbf{R})$.
Let $\mathbf{R}^{\prime}=\left\langle X^{\prime}, Y^{\prime}, R^{\prime}\right\rangle$. A pair $(F, G): \mathbf{R} \rightarrow \mathbf{R}^{\prime}$ is a Tukey connection if

$$
F: X \rightarrow X^{\prime}, \quad G: Y^{\prime} \rightarrow Y, \quad(\forall x \in X)\left(\forall y^{\prime} \in Y^{\prime}\right) F(x) R^{\prime} y^{\prime} \Rightarrow x R G(y)
$$

Denote

$$
\mathbf{R} \preceq_{\mathrm{T}} \mathbf{R}^{\prime} \text { if } \exists(F, G): \mathbf{R} \rightarrow \mathbf{R}^{\prime} .
$$

Dual and Tukey connections

If $\mathbf{R}=\langle X, Y, R\rangle$, denote $\mathbf{R}^{\perp}=\left\langle Y, X, R^{\perp}\right\rangle$ where

$$
y R^{\perp} x \text { iff } \neg(x R y) .
$$

Note that $\mathfrak{b}\left(\mathbf{R}^{\perp}\right)=\mathfrak{d}(\mathbf{R})$ and $\mathfrak{d}\left(\mathbf{R}^{\perp}\right)=\mathfrak{b}(\mathbf{R})$.
Let $\mathbf{R}^{\prime}=\left\langle X^{\prime}, Y^{\prime}, R^{\prime}\right\rangle$. A pair $(F, G): \mathbf{R} \rightarrow \mathbf{R}^{\prime}$ is a Tukey connection if

$$
F: X \rightarrow X^{\prime}, \quad G: Y^{\prime} \rightarrow Y, \quad(\forall x \in X)\left(\forall y^{\prime} \in Y^{\prime}\right) F(x) R^{\prime} y^{\prime} \Rightarrow x R G(y)
$$

Denote

$$
\begin{aligned}
& \mathbf{R} \preceq_{\mathrm{T}} \mathbf{R}^{\prime} \text { if } \exists(F, G): \mathbf{R} \rightarrow \mathbf{R}^{\prime} . \\
& \mathbf{R} \cong_{\mathrm{T}} \mathbf{R}^{\prime} \text { if } \mathbf{R} \preceq_{\mathrm{T}} \mathbf{R}^{\prime} \text { and } \mathbf{R}^{\prime} \preceq_{\mathrm{T}} \mathbf{R} .
\end{aligned}
$$

Dual and Tukey connections

If $\mathbf{R}=\langle X, Y, R\rangle$, denote $\mathbf{R}^{\perp}=\left\langle Y, X, R^{\perp}\right\rangle$ where

$$
y R^{\perp} x \text { iff } \neg(x R y) .
$$

Note that $\mathfrak{b}\left(\mathbf{R}^{\perp}\right)=\mathfrak{d}(\mathbf{R})$ and $\mathfrak{d}\left(\mathbf{R}^{\perp}\right)=\mathfrak{b}(\mathbf{R})$.
Let $\mathbf{R}^{\prime}=\left\langle X^{\prime}, Y^{\prime}, R^{\prime}\right\rangle$. A pair $(F, G): \mathbf{R} \rightarrow \mathbf{R}^{\prime}$ is a Tukey connection if

$$
F: X \rightarrow X^{\prime}, \quad G: Y^{\prime} \rightarrow Y, \quad(\forall x \in X)\left(\forall y^{\prime} \in Y^{\prime}\right) F(x) R^{\prime} y^{\prime} \Rightarrow x R G(y)
$$

Denote

$$
\mathbf{R} \preceq_{\mathrm{T}} \mathbf{R}^{\prime} \text { if } \exists(F, G): \mathbf{R} \rightarrow \mathbf{R}^{\prime} .
$$

$$
\mathbf{R} \cong_{\mathrm{T}} \mathbf{R}^{\prime} \text { if } \mathbf{R} \preceq_{\mathrm{T}} \mathbf{R}^{\prime} \text { and } \mathbf{R}^{\prime} \preceq_{\mathrm{T}} \mathbf{R} .
$$

(1) $\mathbf{R} \preceq{ }_{\mathrm{T}} \mathbf{R}^{\prime}$ implies $\mathfrak{b}\left(\mathbf{R}^{\prime}\right) \leq \mathfrak{b}(\mathbf{R})$ and $\mathfrak{d}(\mathbf{R}) \leq \mathfrak{d}\left(\mathbf{R}^{\prime}\right)$.

Dual and Tukey connections

If $\mathbf{R}=\langle X, Y, R\rangle$, denote $\mathbf{R}^{\perp}=\left\langle Y, X, R^{\perp}\right\rangle$ where

$$
y R^{\perp} x \text { iff } \neg(x R y)
$$

Note that $\mathfrak{b}\left(\mathbf{R}^{\perp}\right)=\mathfrak{d}(\mathbf{R})$ and $\mathfrak{d}\left(\mathbf{R}^{\perp}\right)=\mathfrak{b}(\mathbf{R})$.
Let $\mathbf{R}^{\prime}=\left\langle X^{\prime}, Y^{\prime}, R^{\prime}\right\rangle$. A pair $(F, G): \mathbf{R} \rightarrow \mathbf{R}^{\prime}$ is a Tukey connection if

$$
F: X \rightarrow X^{\prime}, \quad G: Y^{\prime} \rightarrow Y, \quad(\forall x \in X)\left(\forall y^{\prime} \in Y^{\prime}\right) F(x) R^{\prime} y^{\prime} \Rightarrow x R G(y)
$$

Denote

$$
\mathbf{R} \preceq_{\mathrm{T}} \mathbf{R}^{\prime} \text { if } \exists(F, G): \mathbf{R} \rightarrow \mathbf{R}^{\prime} .
$$

$$
\mathbf{R} \cong_{\mathrm{T}} \mathbf{R}^{\prime} \text { if } \mathbf{R} \preceq_{\mathrm{T}} \mathbf{R}^{\prime} \text { and } \mathbf{R}^{\prime} \preceq_{\mathrm{T}} \mathbf{R} .
$$

(1) $\mathbf{R} \preceq_{T} \mathbf{R}^{\prime}$ implies $\mathfrak{b}\left(\mathbf{R}^{\prime}\right) \leq \mathfrak{b}(\mathbf{R})$ and $\mathfrak{d}(\mathbf{R}) \leq \mathfrak{d}\left(\mathbf{R}^{\prime}\right)$.
(2) $\mathbf{R} \cong{ }_{T} \mathbf{R}^{\prime}$ implies $\mathfrak{b}(\mathbf{R})=\mathfrak{b}\left(\mathbf{R}^{\prime}\right)$ and $\mathfrak{d}(\mathbf{R})=\mathfrak{d}\left(\mathbf{R}^{\prime}\right)$

Example

For $h \in \omega^{\omega}$ let $\operatorname{Lc}(h)=\left\langle\omega^{\omega},\left([\omega]^{<\aleph_{0}}\right)^{\omega}, \in_{h}^{*}\right\rangle$ where

$$
\begin{aligned}
x \in_{h}^{*} \varphi \text { iff } & (\forall i)|\varphi(i)| \leq h(i), \text { and } \\
& (\exists m)(\forall i \geq m) x(i) \in \varphi(i) .
\end{aligned}
$$

Example

For $h \in \omega^{\omega}$ let $\mathbf{L c}(h)=\left\langle\omega^{\omega},\left([\omega]^{<\aleph_{0}}\right)^{\omega}, \in_{h}^{*}\right\rangle$ where

$$
\begin{aligned}
x \in_{h}^{*} \varphi \text { iff } & (\forall i)|\varphi(i)| \leq h(i), \text { and } \\
& (\exists m)(\forall i \geq m) x(i) \in \varphi(i) .
\end{aligned}
$$

Bartoszyński (1984)

If $h \rightarrow \infty$ then $\mathcal{N} \cong_{\mathrm{T}} \mathbf{L c}(h)$. Hence $\mathfrak{b}(\mathbf{L} \mathbf{c}(h))=\operatorname{add}(\mathcal{N})$ and $\mathfrak{d}(\mathbf{L c}(h))=\operatorname{cof}(\mathcal{N})$.

Example of 3 values

Theorem (Brendle 1991)

If $\kappa \geq \aleph_{1}$ is regular and $\lambda=\lambda^{<\kappa}$, then it is consistent with ZFC that

Localization forcing

Define the poset LOC :

Conditions. $\varphi: \omega \rightarrow[\omega]^{<\aleph_{0}}$ such that $(\forall i)|\varphi(i)| \leq i$, and $(\exists m)(\forall i \geq m)|\varphi(i)| \leq m$.

Localization forcing

Define the poset LOC :
Conditions. $\varphi: \omega \rightarrow[\omega]^{<\lambda_{0}}$ such that $(\forall i)|\varphi(i)| \leq i$, and $(\exists m)(\forall i \geq m)|\varphi(i)| \leq m$.
Order. $\varphi \leq \psi$ iff $(\forall i) \varphi(i) \subseteq \psi(i)$.

Localization forcing

Define the poset LOC :
Conditions. $\varphi: \omega \rightarrow[\omega]^{<\aleph_{0}}$ such that $(\forall i)|\varphi(i)| \leq i$, and $(\exists m)(\forall i \geq m)|\varphi(i)| \leq m$.
Order. $\varphi \leq \psi$ iff $(\forall i) \varphi(i) \subseteq \psi(i)$.
(1) LOC is σ-linked (thus ccc).

Localization forcing

Define the poset LOC :
Conditions. $\varphi: \omega \rightarrow[\omega]^{<\aleph_{0}}$ such that $(\forall i)|\varphi(i)| \leq i$, and $(\exists m)(\forall i \geq m)|\varphi(i)| \leq m$.
Order. $\varphi \leq \psi$ iff $(\forall i) \varphi(i) \subseteq \psi(i)$.
(1) LOC is σ-linked (thus ccc).
(2) It adds a slalom φ^{*} such that $\left(\forall x \in \omega^{\omega} \cap V\right) x \in_{\text {id }}^{*} \varphi^{*}$ (so it increases $\operatorname{add}(\mathcal{N}))$.

Localization forcing

Define the poset LOC :
Conditions. $\varphi: \omega \rightarrow[\omega]^{<\aleph_{0}}$ such that $(\forall i)|\varphi(i)| \leq i$, and $(\exists m)(\forall i \geq m)|\varphi(i)| \leq m$.
Order. $\varphi \leq \psi$ iff $(\forall i) \varphi(i) \subseteq \psi(i)$.
(1) LOC is σ-linked (thus ccc).
(2) It adds a slalom φ^{*} such that $\left(\forall x \in \omega^{\omega} \cap V\right) x \in_{\text {id }}^{*} \varphi^{*}$ (so it increases $\operatorname{add}(\mathcal{N}))$.
(3) If $N \subseteq V$ is a transitive model (of ZFC) then $\mathbb{L O C}{ }^{N}$ is still σ-linked.

Proof 1 (half)

Perform a FS iteration of length λ using $\mathrm{LOC}^{N_{\xi}}$ for some transitive model N_{ξ} of size $<\kappa$.

Proof 1 (half)

Perform a FS iteration of length λ using $\mathrm{LOC}^{N_{\xi}}$ for some transitive model N_{ξ} of size $<\kappa$.

Book-keeping argument: Any P-name $\dot{Z} \subseteq \omega^{\omega},|\dot{Z}|<\kappa$ is contained in some $N_{\xi}(\xi<\lambda)$ (OK because $\left.\lambda^{<\kappa}=\lambda\right)$.

Proof 1 (half)

Perform a FS iteration of length λ using $\mathrm{LOC}^{N_{\xi}}$ for some transitive model N_{ξ} of size $<\kappa$.

Book-keeping argument: Any P-name $\dot{Z} \subseteq \omega^{\omega},|\dot{Z}|<\kappa$ is contained in some $N_{\xi}(\xi<\lambda)$ (OK because $\left.\lambda^{<\kappa}=\lambda\right)$.

In V_{λ}, for any $\xi<\lambda$ let φ_{ξ} be the slalom added by $\operatorname{LOC}^{N_{\xi}}$.

Proof 1 (half)

Perform a FS iteration of length λ using $\mathrm{LOC}^{N_{\xi}}$ for some transitive model N_{ξ} of size $<\kappa$.

Book-keeping argument: Any P-name $\dot{Z} \subseteq \omega^{\omega},|\dot{Z}|<\kappa$ is contained in some $N_{\xi}(\xi<\lambda)$ (OK because $\lambda^{<\kappa}=\lambda$).

In V_{λ}, for any $\xi<\lambda$ let φ_{ξ} be the slalom added by $\operatorname{LOC}^{N_{\xi}}$.
(1) $\left(\forall x \in \omega^{\omega} \cap N_{\xi}\right) x \in_{\mathrm{id}}^{*} \varphi_{\xi}$.

Proof 1 (half)

Perform a FS iteration of length λ using $\mathrm{LOC}^{N_{\xi}}$ for some transitive model N_{ξ} of size $<\kappa$.

Book-keeping argument: Any P-name $\dot{Z} \subseteq \omega^{\omega},|\dot{Z}|<\kappa$ is contained in some $N_{\xi}(\xi<\lambda)$ (OK because $\lambda^{<\kappa}=\lambda$).

In V_{λ}, for any $\xi<\lambda$ let φ_{ξ} be the slalom added by $\mathrm{LOC}^{N_{\xi}}$.
(1) $\left(\forall x \in \omega^{\omega} \cap N_{\xi}\right) x \in_{\text {id }}^{*} \varphi_{\xi}$.
(2) For any $Z \subseteq \omega^{\omega}$ of size $<\kappa$, there is some $\xi<\lambda$ such that $(\forall x \in Z) x \in_{\mathrm{id}}^{*} \varphi_{\xi}$.

Proof 1 (half)

Perform a FS iteration of length λ using $\mathrm{LOC}^{N_{\xi}}$ for some transitive model N_{ξ} of size $<\kappa$.

Book-keeping argument: Any P-name $\dot{Z} \subseteq \omega^{\omega},|\dot{Z}|<\kappa$ is contained in some $N_{\xi}(\xi<\lambda)$ (OK because $\lambda^{<\kappa}=\lambda$).

In V_{λ}, for any $\xi<\lambda$ let φ_{ξ} be the slalom added by $\mathrm{LOC}^{N_{\xi}}$.
(1) $\left(\forall x \in \omega^{\omega} \cap N_{\xi}\right) x \in_{\mathrm{id}}^{*} \varphi_{\xi}$.
(2) For any $Z \subseteq \omega^{\omega}$ of size $<\kappa$, there is some $\xi<\lambda$ such that $(\forall x \in Z) x \in_{\mathrm{id}}^{*} \varphi_{\xi}$.

Hence $\kappa \leq \operatorname{add}(\mathcal{N})$.

Proof 1 (half)

Perform a FS iteration of length λ using $\mathrm{LOC}^{N_{\xi}}$ for some transitive model N_{ξ} of size $<\kappa$.

Book-keeping argument: Any P-name $\dot{Z} \subseteq \omega^{\omega},|\dot{Z}|<\kappa$ is contained in some $N_{\xi}(\xi<\lambda)$ (OK because $\lambda^{<\kappa}=\lambda$).

In V_{λ}, for any $\xi<\lambda$ let φ_{ξ} be the slalom added by $\mathrm{LOC}^{N_{\xi}}$.
(1) $\left(\forall x \in \omega^{\omega} \cap N_{\xi}\right) x \in_{\text {id }}^{*} \varphi_{\xi}$.
(2) For any $Z \subseteq \omega^{\omega}$ of size $<\kappa$, there is some $\xi<\lambda$ such that $(\forall x \in Z) x \in_{\mathrm{id}}^{*} \varphi_{\xi}$.

Hence $\kappa \leq \operatorname{add}(\mathcal{N})$. On the other hand, $\mathfrak{c} \leq \lambda$.

Special dominating families 1

It remains $\operatorname{non}(\mathcal{M}) \leq \kappa$ and $\lambda \leq \operatorname{cov}(\mathcal{M}) \ldots$

Special dominating families 1

It remains $\operatorname{non}(\mathcal{M}) \leq \kappa$ and $\lambda \leq \operatorname{cov}(\mathcal{M}) \ldots$ Later

Special dominating families 1

It remains $\operatorname{non}(\mathcal{M}) \leq \kappa$ and $\lambda \leq \operatorname{cov}(\mathcal{M}) \ldots$ Later

$\theta-\mathrm{R}$-DOM

Let $\mathbf{R}=\langle X, Y, R\rangle$. Say that $D \subseteq Y$ is θ-R-DOM if, for any $B \subseteq X$ of size $<\theta$ there is some $y \in D$ such that $(\forall x \in B) x R y$.

Special dominating families 1

It remains $\operatorname{non}(\mathcal{M}) \leq \kappa$ and $\lambda \leq \operatorname{cov}(\mathcal{M}) \ldots$ Later

θ-R-DOM

Let $\mathbf{R}=\langle X, Y, R\rangle$. Say that $D \subseteq Y$ is θ-R-DOM if, for any $B \subseteq X$ of size $<\theta$ there is some $y \in D$ such that $(\forall x \in B) x R y$.

For example, $\left\{\varphi_{\xi}: \xi<\lambda\right\}$ is κ-Lc(id)-DOM.

Special dominating families 1

It remains $\operatorname{non}(\mathcal{M}) \leq \kappa$ and $\lambda \leq \operatorname{cov}(\mathcal{M}) \ldots$ Later

θ-R-DOM

Let $\mathbf{R}=\langle X, Y, R\rangle$. Say that $D \subseteq Y$ is θ-R-DOM if, for any $B \subseteq X$ of size $<\theta$ there is some $y \in D$ such that $(\forall x \in B) x R y$.

For example, $\left\{\varphi_{\xi}: \xi<\lambda\right\}$ is κ-Lc(id)-DOM.

```
Lemma
If \existsD\subseteqY 0-\mathbf{R}-DOM, then }0\leq\mathfrak{b}(\mathbf{R})\mathrm{ and }\mathfrak{d}(\mathbf{R})\leq|D|
```


Special dominating families 1

It remains $\operatorname{non}(\mathcal{M}) \leq \kappa$ and $\lambda \leq \operatorname{cov}(\mathcal{M}) \ldots$ Later

θ-R-DOM

Let $\mathbf{R}=\langle X, Y, R\rangle$. Say that $D \subseteq Y$ is θ-R-DOM if, for any $B \subseteq X$ of size $<\theta$ there is some $y \in D$ such that $(\forall x \in B) x R y$.

For example, $\left\{\varphi_{\xi}: \xi<\lambda\right\}$ is κ-Lc(id)-DOM.

```
Lemma
If \existsD\subseteqY 0-\mathbf{R}-DOM, then }0\leq\mathfrak{b}(\mathbf{R})\mathrm{ and }\mathfrak{d}(\mathbf{R})\leq|D|
```

Also useful for $\theta-\mathbf{R}^{\perp}$-DOM.

Special dominating families 2

Fix a directed order $S=\langle S, \leq\rangle$.

Special dominating families 2

Fix a directed order $S=\langle S, \leq\rangle$.
Definition (cf. Goldstern \& Kellner \& Shelah, 2017arxiv-2019pub)
Say that $\left\{y_{i}: i \in S\right\} \subseteq Y$ is S-R-COB if

$$
(\forall x \in X)\left(\exists i_{x} \in S\right)\left(\forall i \geq i_{x}\right) x R y_{i}
$$

Special dominating families 2

Fix a directed order $S=\langle S, \leq\rangle$.
Definition (cf. Goldstern \& Kellner \& Shelah, 2017arxiv-2019pub)
Say that $\left\{y_{i}: i \in S\right\} \subseteq Y$ is S-R-COB if

$$
(\forall x \in X)\left(\exists i_{x} \in S\right)\left(\forall i \geq i_{x}\right) x R y_{i}
$$

$x \mapsto i_{x}$ and $i \mapsto y_{i}$ is a Tukey connection for $\mathbf{R} \preceq_{\mathrm{T}} S$.

Special dominating families 2

Fix a directed order $S=\langle S, \leq\rangle$.
Definition (cf. Goldstern \& Kellner \& Shelah, 2017arxiv-2019pub)
Say that $\left\{y_{i}: i \in S\right\} \subseteq Y$ is S-R-COB if

$$
(\forall x \in X)\left(\exists i_{x} \in S\right)\left(\forall i \geq i_{x}\right) x R y_{i}
$$

$x \mapsto i_{x}$ and $i \mapsto y_{i}$ is a Tukey connection for $\mathbf{R} \preceq_{\mathrm{T}} S$.

Fact

($\exists S$-R-COB set) iff $\mathbf{R} \preceq_{\mathrm{T}} S$, and each implies $\operatorname{cp}(S) \leq \mathfrak{b}(\mathbf{R})$ and $\mathfrak{d}(\mathbf{R}) \leq \operatorname{cf}(S)$.

Special dominating families 2 (cont.)

Notation

Say that $\mathbf{R}=\langle X, Y, R\rangle$ is Borel if X, Y are Polish spaces and R is Borel.

Special dominating families 2 (cont.)

Notation
 Say that $\mathbf{R}=\langle X, Y, R\rangle$ is Borel if X, Y are Polish spaces and R is Borel.

Fix a poset \mathbb{P} and a Borel \mathbf{R}.

Special dominating families 2 (cont.)

Notation

Say that $\mathbf{R}=\langle X, Y, R\rangle$ is Borel if X, Y are Polish spaces and R is Borel.
Fix a poset \mathbb{P} and a Borel \mathbf{R}.

Definition (Goldstern \& Kellner \& Shelah, 2017-2019)

$\operatorname{COB}_{\mathrm{R}}(\mathbb{P}, S)$ means that there is some $\left\{\dot{y}_{i}: i \in S\right\} \subseteq Y$ s.t.

$$
(\forall \dot{x} \in X)\left(\exists i_{\dot{x}} \in S\right)\left(\forall i \geq i_{x}\right) \Vdash_{\mathbb{P}} \dot{x} R \dot{y}_{i}
$$

Special dominating families 2 (cont.)

Notation

Say that $\mathbf{R}=\langle X, Y, R\rangle$ is Borel if X, Y are Polish spaces and R is Borel.
Fix a poset \mathbb{P} and a Borel \mathbf{R}.

Definition (Goldstern \& Kellner \& Shelah, 2017-2019)

$\operatorname{COB}_{\mathrm{R}}(\mathbb{P}, S)$ means that there is some $\left\{\dot{y}_{i}: i \in S\right\} \subseteq Y$ s.t.

$$
(\forall \dot{x} \in X)\left(\exists i_{\dot{x}} \in S\right)\left(\forall i \geq i_{x}\right) \Vdash_{\mathbb{P}} \dot{x} R \dot{y}_{i}
$$

(1) $\operatorname{COB}_{\mathbf{R}}(\mathbb{P}, S)$ implies $\Vdash_{\mathbb{P}} \mathbf{R} \preceq_{\mathrm{T}} S$.

Special dominating families 2 (cont.)

Notation

Say that $\mathbf{R}=\langle X, Y, R\rangle$ is Borel if X, Y are Polish spaces and R is Borel.
Fix a poset \mathbb{P} and a Borel \mathbf{R}.

Definition (Goldstern \& Kellner \& Shelah, 2017-2019)

$\operatorname{COB}_{\mathrm{R}}(\mathbb{P}, S)$ means that there is some $\left\{\dot{y}_{i}: i \in S\right\} \subseteq Y$ s.t.

$$
(\forall \dot{x} \in X)\left(\exists i_{\dot{x}} \in S\right)\left(\forall i \geq i_{x}\right) \Vdash_{\mathbb{P}} \dot{x} R \dot{y}_{i}
$$

(1) $\operatorname{COB}_{\mathbf{R}}(\mathbb{P}, S)$ implies $\Vdash_{\mathbb{P}} \mathbf{R} \preceq_{\mathrm{T}} S$.
(2) $\operatorname{COB}_{\mathbf{R}}(\mathbb{P}, S)$ implies $\Vdash_{\mathbb{P}} " \operatorname{cp}(S)^{V} \leq \mathfrak{b}(\mathbf{R})$ and $\mathfrak{d}(\mathbf{R}) \leq \operatorname{cf}(S)^{V "}$.

Special dominating families 2 (cont.)

Notation

Say that $\mathbf{R}=\langle X, Y, R\rangle$ is Borel if X, Y are Polish spaces and R is Borel.
Fix a poset \mathbb{P} and a Borel \mathbf{R}.

Definition (Goldstern \& Kellner \& Shelah, 2017-2019)

$\operatorname{COB}_{\mathrm{R}}(\mathbb{P}, S)$ means that there is some $\left\{\dot{y}_{i}: i \in S\right\} \subseteq Y$ s.t.

$$
(\forall \dot{x} \in X)\left(\exists i_{\dot{x}} \in S\right)\left(\forall i \geq i_{x}\right) \Vdash_{\mathbb{P}} \dot{x} R \dot{y}_{i}
$$

(1) $\operatorname{COB}_{\mathbf{R}}(\mathbb{P}, S)$ implies $\Vdash_{\mathbb{P}} \mathbf{R} \preceq_{T} S$.
(2) $\mathrm{COB}_{\mathbf{R}}(\mathbb{P}, S)$ implies $\Vdash_{\mathbb{P}} " \operatorname{cp}(S)^{V} \leq \mathfrak{b}(\mathbf{R})$ and $\mathfrak{d}(\mathbf{R}) \leq \operatorname{cf}(S)^{V "}$.
(3) If \mathbb{P} is $\mathrm{cp}(S)^{V}$-cc then $\Vdash_{\mathbb{P}} \mathrm{cp}(S)=\mathrm{cp}(S)^{V}$.

Special dominating families 2 (cont.)

Notation

Say that $\mathbf{R}=\langle X, Y, R\rangle$ is Borel if X, Y are Polish spaces and R is Borel.
Fix a poset \mathbb{P} and a Borel \mathbf{R}.

Definition (Goldstern \& Kellner \& Shelah, 2017-2019)

$\operatorname{COB}_{\mathrm{R}}(\mathbb{P}, S)$ means that there is some $\left\{\dot{y}_{i}: i \in S\right\} \subseteq Y$ s.t.

$$
(\forall \dot{x} \in X)\left(\exists i_{\dot{x}} \in S\right)\left(\forall i \geq i_{x}\right) \Vdash_{\mathbb{P}} \dot{x} R \dot{y}_{i} .
$$

(1) $\operatorname{COB}_{\mathbf{R}}(\mathbb{P}, S)$ implies $\Vdash_{\mathbb{P}} \mathbf{R} \preceq_{\mathrm{T}} S$.
(2) $\operatorname{COB}_{\mathbf{R}}(\mathbb{P}, S)$ implies $\Vdash_{\mathbb{P}} " \operatorname{cp}(S)^{V} \leq \mathfrak{b}(\mathbf{R})$ and $\mathfrak{d}(\mathbf{R}) \leq \operatorname{cf}(S)^{V "}$.
(3) If \mathbb{P} is $\operatorname{cp}(S)^{V}$-cc then $\Vdash_{\mathbb{P}} \operatorname{cp}(S)=\operatorname{cp}(S)^{V}$.
(9) If \mathbb{P} is $\operatorname{cp}(S)^{V}$-cc then $\operatorname{COB}_{\mathbf{R}}(\mathbb{P}, S)$ iff $\Vdash_{\mathbb{P}} \mathbf{R} \preceq_{\mathrm{T}} S$.

Proof 2 (half)

Modified book-keeping. For $\alpha<\kappa, A \subseteq \lambda$ in V and a \mathbb{P}_{λ}-name $\dot{x} \in \omega^{\omega}$, if $|A|<\kappa$ then, for some $\eta<\lambda, \dot{x} \in \dot{N}_{\eta}$ and $(\forall \xi \in A) \xi<\eta, \dot{N}_{\xi} \subseteq \dot{N}_{\eta}$.

Proof 2 (half)

Modified book-keeping. For $\alpha<\kappa, A \subseteq \lambda$ in V and a \mathbb{P}_{λ}-name $\dot{x} \in \omega^{\omega}$, if $|A|<\kappa$ then, for some $\eta<\lambda, \dot{x} \in \dot{N}_{\eta}$ and $(\forall \xi \in A) \xi<\eta, \dot{N}_{\xi} \subseteq \dot{N}_{\eta}$.
$S:=\lambda$ ordered by $\xi \leq s \eta$ iff $\xi \leq \eta$ and $\Vdash \dot{N}_{\xi} \subseteq \dot{N}_{\eta}$.

Proof 2 (half)

Modified book-keeping. For $\alpha<\kappa, A \subseteq \lambda$ in V and a \mathbb{P}_{λ}-name $\dot{x} \in \omega^{\omega}$, if $|A|<\kappa$ then, for some $\eta<\lambda, \dot{x} \in \dot{N}_{\eta}$ and $(\forall \xi \in A) \xi<\eta, \dot{N}_{\xi} \subseteq \dot{N}_{\eta}$.
$S:=\lambda$ ordered by $\xi \leq s \eta$ iff $\xi \leq \eta$ and $\Vdash \dot{N}_{\xi} \subseteq \dot{N}_{\eta}$.
(1) $\kappa \leq \operatorname{cp}(S) \leq \operatorname{cf}(S) \leq|S|=\lambda$.

Proof 2 (half)

Modified book-keeping. For $\alpha<\kappa, A \subseteq \lambda$ in V and a \mathbb{P}_{λ}-name $\dot{x} \in \omega^{\omega}$, if $|A|<\kappa$ then, for some $\eta<\lambda, \dot{x} \in \dot{N}_{\eta}$ and $(\forall \xi \in A) \xi<\eta, \dot{N}_{\xi} \subseteq \dot{N}_{\eta}$.
$S:=\lambda$ ordered by $\xi \leq s \eta$ iff $\xi \leq \eta$ and $\Vdash \dot{N}_{\xi} \subseteq \dot{N}_{\eta}$.
(1) $\kappa \leq \operatorname{cp}(S) \leq \operatorname{cf}(S) \leq|S|=\lambda$.
(2) $\left\{\varphi_{\xi}: \xi<\lambda\right\}$ is S - Lcc(id)-COB.

Proof 2 (half)

Modified book-keeping. For $\alpha<\kappa, A \subseteq \lambda$ in V and a \mathbb{P}_{λ}-name $\dot{x} \in \omega^{\omega}$, if $|A|<\kappa$ then, for some $\eta<\lambda, \dot{x} \in \dot{N}_{\eta}$ and $(\forall \xi \in A) \xi<\eta, \dot{N}_{\xi} \subseteq \dot{N}_{\eta}$.
$S:=\lambda$ ordered by $\xi \leq s \eta$ iff $\xi \leq \eta$ and $\Vdash \dot{N}_{\xi} \subseteq \dot{N}_{\eta}$.
(1) $\kappa \leq \operatorname{cp}(S) \leq \operatorname{cf}(S) \leq|S|=\lambda$.
(2) $\left\{\varphi_{\xi}: \xi<\lambda\right\}$ is S - Lc (id)-COB.
(3) $\operatorname{COB}_{\text {Lcc(id) }}(\mathbb{P}, S)$ holds. So \mathbb{P} forces $\kappa \leq \operatorname{add}(\mathcal{N})$ and $\operatorname{cof}(\mathcal{N}) \leq \lambda$.

Cohen reals

There is an F_{σ} relation $R_{4} \subseteq 2^{\omega}$ such that $\mathbf{R}_{4}:=\left\langle 2^{\omega}, 2^{\omega}, R_{4}\right\rangle \cong{ }_{\mathrm{T}} \mathbf{C}_{\mathcal{M}}$. Hence $\mathfrak{b}\left(\mathbf{R}_{4}\right)=\operatorname{non}(\mathcal{M})$ and $\mathfrak{d}(\mathbf{R})=\operatorname{cov}(\mathcal{M})$

Cohen reals

There is an F_{σ} relation $R_{4} \subseteq 2^{\omega}$ such that $\mathbf{R}_{4}:=\left\langle 2^{\omega}, 2^{\omega}, R_{4}\right\rangle \cong_{T} \mathbf{C}_{\mathcal{M}}$. Hence $\mathfrak{b}\left(\mathbf{R}_{4}\right)=\operatorname{non}(\mathcal{M})$ and $\mathfrak{d}(\mathbf{R})=\operatorname{cov}(\mathcal{M})$

Fact

If $c \in 2^{\omega}$ is Cohen over V then $\neg\left(c R_{4} y\right)$ for any $y \in 2^{\omega} \cap V$.

Cohen reals

There is an F_{σ} relation $R_{4} \subseteq 2^{\omega}$ such that $\mathbf{R}_{4}:=\left\langle 2^{\omega}, 2^{\omega}, R_{4}\right\rangle \cong_{T} \mathbf{C}_{\mathcal{M}}$. Hence $\mathfrak{b}\left(\mathbf{R}_{4}\right)=\operatorname{non}(\mathcal{M})$ and $\mathfrak{d}(\mathbf{R})=\operatorname{cov}(\mathcal{M})$

Fact

If $c \in 2^{\omega}$ is Cohen over V then $\neg\left(c R_{4} y\right)$ for any $y \in 2^{\omega} \cap V$.
Let $\theta \geq \aleph_{1}$ be regular, \mathbb{P} resulting from a FS it. of ccc posets of length θ.

Cohen reals

There is an F_{σ} relation $R_{4} \subseteq 2^{\omega}$ such that $\mathbf{R}_{4}:=\left\langle 2^{\omega}, 2^{\omega}, R_{4}\right\rangle \cong_{T} \mathbf{C}_{\mathcal{M}}$. Hence $\mathfrak{b}\left(\mathbf{R}_{4}\right)=\operatorname{non}(\mathcal{M})$ and $\mathfrak{d}(\mathbf{R})=\operatorname{cov}(\mathcal{M})$

Fact

If $c \in 2^{\omega}$ is Cohen over V then $\neg\left(c R_{4} y\right)$ for any $y \in 2^{\omega} \cap V$.
Let $\theta \geq \aleph_{1}$ be regular, \mathbb{P} resulting from a FS it. of ccc posets of length θ.
(1) It adds a set of Cohen reals $C:=\left\{c_{\xi}: \xi<\theta\right\}$.

Cohen reals

There is an F_{σ} relation $R_{4} \subseteq 2^{\omega}$ such that $\mathbf{R}_{4}:=\left\langle 2^{\omega}, 2^{\omega}, R_{4}\right\rangle \cong_{T} \mathbf{C}_{\mathcal{M}}$. Hence $\mathfrak{b}\left(\mathbf{R}_{4}\right)=\operatorname{non}(\mathcal{M})$ and $\mathfrak{d}(\mathbf{R})=\operatorname{cov}(\mathcal{M})$

Fact

If $c \in 2^{\omega}$ is Cohen over V then $\neg\left(c R_{4} y\right)$ for any $y \in 2^{\omega} \cap V$.
Let $\theta \geq \aleph_{1}$ be regular, \mathbb{P} resulting from a FS it. of ccc posets of length θ.
(1) It adds a set of Cohen reals $C:=\left\{c_{\xi}: \xi<\theta\right\}$.
(2) $\left(\forall y \in 2^{\omega} \cap V_{\theta}\right)\left(\exists \xi_{0}<\theta\right)\left(\forall \xi \geq \xi_{0}\right) \neg\left(c_{\xi} R_{4} y\right)$.

Cohen reals

There is an F_{σ} relation $R_{4} \subseteq 2^{\omega}$ such that $\mathbf{R}_{4}:=\left\langle 2^{\omega}, 2^{\omega}, R_{4}\right\rangle \cong_{T} \mathbf{C}_{\mathcal{M}}$. Hence $\mathfrak{b}\left(\mathbf{R}_{4}\right)=\operatorname{non}(\mathcal{M})$ and $\mathfrak{d}(\mathbf{R})=\operatorname{cov}(\mathcal{M})$

Fact

If $c \in 2^{\omega}$ is Cohen over V then $\neg\left(c R_{4} y\right)$ for any $y \in 2^{\omega} \cap V$.
Let $\theta \geq \aleph_{1}$ be regular, \mathbb{P} resulting from a FS it. of ccc posets of length θ.
(1) It adds a set of Cohen reals $C:=\left\{c_{\xi}: \xi<\theta\right\}$.
(2) $\left(\forall y \in 2^{\omega} \cap V_{\theta}\right)\left(\exists \xi_{0}<\theta\right)\left(\forall \xi \geq \xi_{0}\right) \neg\left(c_{\xi} R_{4} y\right)$.
(3) \mathbb{P} forces that C is $\theta-\mathbf{R}_{4}^{\perp}$-COB.

Cohen reals

There is an F_{σ} relation $R_{4} \subseteq 2^{\omega}$ such that $\mathbf{R}_{4}:=\left\langle 2^{\omega}, 2^{\omega}, R_{4}\right\rangle \cong_{T} \mathbf{C}_{\mathcal{M}}$. Hence $\mathfrak{b}\left(\mathbf{R}_{4}\right)=\operatorname{non}(\mathcal{M})$ and $\mathfrak{d}(\mathbf{R})=\operatorname{cov}(\mathcal{M})$

Fact

If $c \in 2^{\omega}$ is Cohen over V then $\neg\left(c R_{4} y\right)$ for any $y \in 2^{\omega} \cap V$.
Let $\theta \geq \aleph_{1}$ be regular, \mathbb{P} resulting from a FS it. of ccc posets of length θ.
(1) It adds a set of Cohen reals $C:=\left\{c_{\xi}: \xi<\theta\right\}$.
(2) $\left(\forall y \in 2^{\omega} \cap V_{\theta}\right)\left(\exists \xi_{0}<\theta\right)\left(\forall \xi \geq \xi_{0}\right) \neg\left(c_{\xi} R_{4} y\right)$.
(3) \mathbb{P} forces that C is $\theta-\mathbf{R}_{4}^{\perp}$-COB.
(9) \mathbb{P} forces $\mathfrak{b}\left(\mathbf{R}_{4}\right) \leq \operatorname{cf}(\theta)=\theta \leq \mathfrak{d}\left(\mathbf{R}_{4}\right)$.

Special unbounded families

Fix a Borel $\mathbf{R}=\langle X, Y, R\rangle$.

Definition

Let L be a linear order.
(1) $F \subseteq X$ is $L-\mathbf{R}-L C U$ if it is $L-\mathbf{R}^{\perp}$-COB.

Special unbounded families

Fix a Borel $\mathbf{R}=\langle X, Y, R\rangle$.

Definition

Let L be a linear order.
(1) $F \subseteq X$ is $L-\mathbf{R}-L C U$ if it is $L-\mathbf{R}^{\perp}-C O B$.
(2) $\operatorname{LCU}_{\mathrm{R}}(\mathbb{P}, L)$ means $\operatorname{COB}_{\mathbf{R}^{\perp}}(\mathbb{P}, L)$.

Special unbounded families

Fix a Borel $\mathbf{R}=\langle X, Y, R\rangle$.

Definition

Let L be a linear order.
(1) $F \subseteq X$ is $L-\mathrm{R}-\mathrm{LCU}$ if it is $L-\mathbf{R}^{\perp}$-COB.
(2) $\operatorname{LCU}_{\mathrm{R}}(\mathbb{P}, L)$ means $\operatorname{COB}_{\mathbf{R}^{\perp}}(\mathbb{P}, L)$.
(1) $\operatorname{LCU}_{\mathbf{R}}(\mathbb{P}, L)$ implies $\Vdash_{\mathbb{P}} \mathbf{R}^{\perp} \preceq_{\mathrm{T}} L$.

Special unbounded families

Fix a Borel $\mathbf{R}=\langle X, Y, R\rangle$.

Definition

Let L be a linear order.
(1) $F \subseteq X$ is $L-\mathbf{R}-L C U$ if it is $L-\mathbf{R}^{\perp}$-COB.
(2) $\operatorname{LCU}_{\mathrm{R}}(\mathbb{P}, L)$ means $\operatorname{COB}_{\mathbf{R}^{\perp}}(\mathbb{P}, L)$.
(1) $\operatorname{LCU}_{\mathbf{R}}(\mathbb{P}, L)$ implies $\Vdash_{\mathbb{P}} \mathbf{R}^{\perp} \preceq_{\mathrm{T}} L$.
(2) $\operatorname{LCU}_{\mathbf{R}}(\mathbb{P}, L)$ implies $\Vdash_{\mathbb{P}} " \mathfrak{b}(\mathbf{R}) \leq \operatorname{cf}(L)^{V} \leq \mathfrak{d}(\mathbf{R})^{\prime}$.

Special unbounded families

Fix a Borel $\mathbf{R}=\langle X, Y, R\rangle$.

Definition

Let L be a linear order.
(1) $F \subseteq X$ is $L-\mathbf{R}-L C U$ if it is $L-\mathbf{R}^{\perp}$-COB.
(2) $\operatorname{LCU}_{\mathrm{R}}(\mathbb{P}, L)$ means $\operatorname{COB}_{\mathbf{R}^{\perp}}(\mathbb{P}, L)$.
(1) $\operatorname{LCU}_{\mathbf{R}}(\mathbb{P}, L)$ implies $\Vdash_{\mathbb{P}} \mathbf{R}^{\perp} \preceq_{\mathrm{T}} L$.
(2) $\operatorname{LCU}_{\mathbf{R}}(\mathbb{P}, L)$ implies $\Vdash_{\mathbb{P}} " \mathfrak{b}(\mathbf{R}) \leq \operatorname{cf}(L)^{V} \leq \mathfrak{d}(\mathbf{R})^{\prime}$.
(3) If \mathbb{P} is $\operatorname{cf}(L)^{V}$-cc then $\Vdash_{\mathbb{P}} \operatorname{cf}(L)=\operatorname{cf}(L)^{V}$.

Special unbounded families

Fix a Borel $\mathbf{R}=\langle X, Y, R\rangle$.

Definition

Let L be a linear order.
(1) $F \subseteq X$ is $L-R-L C U$ if it is $L-\mathbf{R}^{\perp}-C O B$.
(2) $\operatorname{LCU}_{\mathbf{R}}(\mathbb{P}, L)$ means $\operatorname{COB}_{\mathbf{R}^{\perp}}(\mathbb{P}, L)$.
(1) $\operatorname{LCU}_{\mathbf{R}}(\mathbb{P}, L)$ implies $\Vdash_{\mathbb{P}} \mathbf{R}^{\perp} \preceq_{\mathrm{T}} L$.
(2) $\operatorname{LCU}_{\mathbf{R}}(\mathbb{P}, L)$ implies $\Vdash_{\mathbb{P}} " \mathfrak{b}(\mathbf{R}) \leq \operatorname{cf}(L)^{V} \leq \mathfrak{d}(\mathbf{R})^{\prime}$.
(3) If \mathbb{P} is $\operatorname{cf}(L)^{V}$-cc then $\Vdash_{\mathbb{P}} \operatorname{cf}(L)=\operatorname{cf}(L)^{V}$.
(9) If \mathbb{P} is $\operatorname{cf}(L)^{V}$-cc then $\operatorname{LCU}_{\mathbf{R}}(\mathbb{P}, L)$ iff $\Vdash_{\mathbb{P}} \mathbf{R}^{\perp} \preceq_{\mathrm{T}} L$.

Proof $1 \& 2$ (cont.)

Main Claim

For any regular $\kappa \leq \theta \leq \lambda$, the $\theta-\mathbf{R}_{4}-$ LCU set of Cohen reals added by \mathbb{P}_{θ} is preserved in V_{λ}. I.e., $\operatorname{LCU}(\mathbb{P}, \theta)$ holds.

Proof $1 \& 2$ (cont.)

Main Claim

For any regular $\kappa \leq \theta \leq \lambda$, the $\theta-\mathbf{R}_{4}-$ LCU set of Cohen reals added by \mathbb{P}_{θ} is preserved in V_{λ}. I.e., $\operatorname{LCU}(\mathbb{P}, \theta)$ holds.

For such $\theta, \mathbf{R}_{4}^{\perp} \preceq_{\mathrm{T}} \theta$, so $\operatorname{non}(\mathcal{M}) \leq \theta \leq \operatorname{cov}(\mathcal{M})$. Hence $\operatorname{non}(\mathcal{M}) \leq \kappa$ and $\lambda \leq \operatorname{cov}(\mathcal{M})$.

Preservation theory 1

Fix a Borel \mathbf{R} and $\theta \geq \aleph_{1}$ regular.

Definition (Judah \& Shelah 1990, and Brendle 1991)

A poset \mathbb{P} is θ-R-good if $(\forall \dot{y} \in Y)(\exists H \subseteq Y)$:

$$
0<|H|<\theta \text { and }(\forall x \in X)\left[((\forall z \in H) \neg(x R z)) \Rightarrow \Vdash_{\mathbb{P}} \neg(x R \dot{y})\right]
$$

Preservation theory 1

Fix a Borel \mathbf{R} and $\theta \geq \aleph_{1}$ regular.

Definition (Judah \& Shelah 1990, and Brendle 1991)

A poset \mathbb{P} is θ-R-good if $(\forall \dot{y} \in Y)(\exists H \subseteq Y)$:

$$
0<|H|<\theta \text { and }(\forall x \in X)\left[((\forall z \in H) \neg(x R z)) \Rightarrow \Vdash_{\mathbb{P}} \neg(x R \dot{y})\right]
$$

Fact

If \mathbb{P} is θ-cc and θ - \mathbf{R}-good then it preserves
(i) $\theta-\mathbf{R}^{\perp}$-DOM sets,
(ii) $S-\mathbf{R}^{\perp}$-COB sets whenever $\operatorname{cp}(S) \geq \theta$,
(iii) $L-\mathbf{R}-L C U$ sets whenever $\operatorname{cf}(L) \geq \theta$.

Preservation theory 1

Fix a Borel \mathbf{R} and $\theta \geq \aleph_{1}$ regular.

Definition (Judah \& Shelah 1990, and Brendle 1991)

A poset \mathbb{P} is θ-R-good if $(\forall \dot{y} \in Y)(\exists H \subseteq Y)$:

$$
0<|H|<\theta \text { and }(\forall x \in X)\left[((\forall z \in H) \neg(x R z)) \Rightarrow \Vdash_{\mathbb{P}} \neg(x R \dot{y})\right]
$$

Fact

If \mathbb{P} is θ-cc and θ - \mathbf{R}-good then it preserves
(i) θ - \mathbf{R}^{\perp}-DOM sets,
(ii) $S-\mathbf{R}^{\perp}$-COB sets whenever $\mathrm{cp}(S) \geq \theta$,
(iii) $L-\mathbf{R}-\mathrm{LCU}$ sets whenever $\mathrm{cf}(L) \geq \theta$.
(1) If \mathbb{P} is θ - \mathbf{R}-good and $\theta \leq \theta^{\prime}$ then \mathbb{P} is θ^{\prime} - \mathbf{R}-good.
(2) If \mathbb{P} is θ - \mathbf{R}-good and $\mathbb{P}_{0} \lessdot \mathbb{P}$ then \mathbb{P}_{0} is.

Preservation theory 1 (cont.)

Definition

Say that $\mathbf{R}=\langle X, Y, R\rangle$ is Polish if
(1) X is perfect Polish, Y is Polish,
(2) $R=\bigcup_{i<\omega} R_{i}$ where each R_{i} is closed,
(3) $(\forall y \in Y)\left\{x \in X: x R_{i} y\right\}$ is nwd.

Preservation theory 1 (cont.)

Definition

Say that $\mathbf{R}=\langle X, Y, R\rangle$ is Polish if
(1) X is perfect Polish, Y is Polish,
(2) $R=\bigcup_{i<\omega} R_{i}$ where each R_{i} is closed,
(3) $(\forall y \in Y)\left\{x \in X: x R_{i} y\right\}$ is nwd.

This implies $\mathbf{C}_{\mathcal{M}} \preceq_{\mathrm{T}} \mathbf{R}$, so $\mathfrak{b}(\mathbf{R}) \leq \operatorname{non}(\mathcal{M})$ and $\operatorname{cov}(\mathcal{M}) \leq \mathfrak{d}(\mathbf{R})$.

Preservation theory 1 (cont.)

Definition

Say that $\mathbf{R}=\langle X, Y, R\rangle$ is Polish if
(1) X is perfect Polish, Y is Polish,
(2) $R=\bigcup_{i<\omega} R_{i}$ where each R_{i} is closed,
(3) $(\forall y \in Y)\left\{x \in X: x R_{i} y\right\}$ is nwd.

This implies $\mathbf{C}_{\mathcal{M}} \preceq_{\mathrm{T}} \mathbf{R}$, so $\mathfrak{b}(\mathbf{R}) \leq \operatorname{non}(\mathcal{M})$ and $\operatorname{cov}(\mathcal{M}) \leq \mathfrak{d}(\mathbf{R})$.
Fix a Polish \mathbf{R} and an uncountable regular κ.

Theorem

Any FS iteration of κ-cc κ - \mathbf{R}-good posets is again κ - \mathbf{R}-good.

Preservation theory 1 (cont.)

Definition

Say that $\mathbf{R}=\langle X, Y, R\rangle$ is Polish if
(1) X is perfect Polish, Y is Polish,
(2) $R=\bigcup_{i<\omega} R_{i}$ where each R_{i} is closed,
(3) $(\forall y \in Y)\left\{x \in X: x R_{i} y\right\}$ is nwd.

This implies $\mathbf{C}_{\mathcal{M}} \preceq_{\mathrm{T}} \mathbf{R}$, so $\mathfrak{b}(\mathbf{R}) \leq \operatorname{non}(\mathcal{M})$ and $\operatorname{cov}(\mathcal{M}) \leq \mathfrak{d}(\mathbf{R})$.
Fix a Polish \mathbf{R} and an uncountable regular κ.

Theorem

Any FS iteration of κ-cc κ - \mathbf{R}-good posets is again κ - \mathbf{R}-good.

Corollary

If \mathbb{P} is a FS iteration of κ-cc κ - \mathbf{R}-good posets then $\operatorname{LCU}_{\mathbf{R}}(\mathbb{P}, \theta)$ holds for any regular $\kappa \leq \theta \leq$ length.

Examples

Fact

For any Polish \mathbf{R} and $\theta \geq \aleph_{1}$ regular, if $|\mathbb{P}|<\theta$ then \mathbb{P} is θ-R-good.

Examples

Fact

For any Polish \mathbf{R} and $\theta \geq \aleph_{1}$ regular, if $|\mathbb{P}|<\theta$ then \mathbb{P} is θ - \mathbf{R}-good.
Since \mathbf{R}_{4} is Polish,
is κ - \mathbf{R}_{4}-good. This proves the Main Claim before.

Examples

(1) $\mathbf{R}_{3}:=\omega^{\omega}$ is Polish.

Examples

(1) $\mathbf{R}_{3}:=\omega^{\omega}$ is Polish.
(2) There is a Polish $\mathbf{R}_{2} \cong{ }_{\mathrm{T}} \mathbf{C}_{\mathcal{N}}^{\perp}\left(\mathfrak{b}\left(\mathbf{R}_{2}\right)=\operatorname{cov}(\mathcal{N}), \mathfrak{d}\left(\mathbf{R}_{2}\right)=\operatorname{non}(\mathcal{N})\right)$.

Examples

(1) $\mathbf{R}_{3}:=\omega^{\omega}$ is Polish.
(2) There is a Polish $\mathbf{R}_{2} \cong{ }_{\mathrm{T}} \mathbf{C}_{\mathcal{N}}^{\perp}\left(\mathfrak{b}\left(\mathbf{R}_{2}\right)=\operatorname{cov}(\mathcal{N}), \mathfrak{d}\left(\mathbf{R}_{2}\right)=\operatorname{non}(\mathcal{N})\right)$. (Brendle 1991) Any θ-centered poset is $\theta^{+}-\mathbf{R}_{2}$-good.

Examples

(1) $\mathbf{R}_{3}:=\omega^{\omega}$ is Polish.
(2) There is a Polish $\mathbf{R}_{2} \cong{ }_{\mathrm{T}} \mathbf{C}_{\mathcal{N}}^{\perp}\left(\mathfrak{b}\left(\mathbf{R}_{2}\right)=\operatorname{cov}(\mathcal{N}), \mathfrak{d}\left(\mathbf{R}_{2}\right)=\operatorname{non}(\mathcal{N})\right)$.
(Brendle 1991) Any θ-centered poset is $\theta^{+}-\mathbf{R}_{2}$-good.
(3) $\mathbf{R}_{1}:=\left\langle\omega^{\omega},\left([\omega]^{<\aleph_{0}}\right)^{\omega}, \in_{H}^{*}\right\rangle$ where $H=\left\{\operatorname{id}^{k+1}: k<\omega\right\}$ and

$$
\begin{gathered}
x \in_{H}^{*} \varphi \text { iff }(\exists h \in H)(\forall i)|\varphi(i)| \leq h(i), \text { and } \\
(\exists m)(\forall i \geq m) \times(i) \in \varphi(i) .
\end{gathered}
$$

Examples

(1) $\mathbf{R}_{3}:=\omega^{\omega}$ is Polish.
(2) There is a Polish $\mathbf{R}_{2} \cong_{\mathrm{T}} \mathbf{C}_{\mathcal{N}}^{\perp}\left(\mathfrak{b}\left(\mathbf{R}_{2}\right)=\operatorname{cov}(\mathcal{N}), \mathfrak{d}\left(\mathbf{R}_{2}\right)=\operatorname{non}(\mathcal{N})\right)$.
(Brendle 1991) Any θ-centered poset is $\theta^{+}-\mathbf{R}_{2}$-good.
(3) $\mathbf{R}_{1}:=\left\langle\omega^{\omega},\left([\omega]^{<\aleph_{0}}\right)^{\omega}, \in_{H}^{*}\right\rangle$ where $H=\left\{\operatorname{id}^{k+1}: k<\omega\right\}$ and

$$
\begin{gathered}
x \in_{H}^{*} \varphi \text { iff }(\exists h \in H)(\forall i)|\varphi(i)| \leq h(i), \text { and } \\
(\exists m)(\forall i \geq m) \times(i) \in \varphi(i) .
\end{gathered}
$$

Indeed $\mathfrak{b}\left(\mathbf{R}_{1}\right)=\operatorname{add}(\mathcal{N})$ and $\mathfrak{d}\left(\mathbf{R}_{1}\right)=\operatorname{cof}(\mathcal{N})$. (In fact $\left.(\forall h \in H) \mathbf{L c}(H) \preceq_{\mathrm{T}} \mathbf{L c}(h)\right)$

Examples

(1) $\mathbf{R}_{3}:=\omega^{\omega}$ is Polish.
(2) There is a Polish $\mathbf{R}_{2} \cong_{\mathrm{T}} \mathbf{C}_{\mathcal{N}}^{\perp}\left(\mathfrak{b}\left(\mathbf{R}_{2}\right)=\operatorname{cov}(\mathcal{N}), \mathfrak{d}\left(\mathbf{R}_{2}\right)=\operatorname{non}(\mathcal{N})\right)$.
(Brendle 1991) Any θ-centered poset is $\theta^{+}-\mathbf{R}_{2}$-good.
(3) $\mathbf{R}_{1}:=\left\langle\omega^{\omega},\left([\omega]^{<\aleph_{0}}\right)^{\omega}, \in_{H}^{*}\right\rangle$ where $H=\left\{\operatorname{id}^{k+1}: k<\omega\right\}$ and

$$
\begin{gathered}
x \in_{H}^{*} \varphi \text { iff }(\exists h \in H)(\forall i)|\varphi(i)| \leq h(i), \text { and } \\
(\exists m)(\forall i \geq m) x(i) \in \varphi(i) .
\end{gathered}
$$

Indeed $\mathfrak{b}\left(\mathbf{R}_{1}\right)=\operatorname{add}(\mathcal{N})$ and $\mathfrak{d}\left(\mathbf{R}_{1}\right)=\operatorname{cof}(\mathcal{N})$. (In fact $\left.(\forall h \in H) \mathbf{L c}(H) \preceq_{\mathrm{T}} \mathbf{L c}(h)\right)$
(Judah \& Shelah 1990) Any θ-centered poset is $\theta^{+}-\mathbf{R}_{1}$-good.

Examples

(1) $\mathbf{R}_{3}:=\omega^{\omega}$ is Polish.
(2) There is a Polish $\mathbf{R}_{2} \cong_{\mathrm{T}} \mathbf{C}_{\mathcal{N}}^{\perp}\left(\mathfrak{b}\left(\mathbf{R}_{2}\right)=\operatorname{cov}(\mathcal{N}), \mathfrak{d}\left(\mathbf{R}_{2}\right)=\operatorname{non}(\mathcal{N})\right)$.
(Brendle 1991) Any θ-centered poset is $\theta^{+}-\mathbf{R}_{2}$-good.
(3) $\mathbf{R}_{1}:=\left\langle\omega^{\omega},\left([\omega]^{<\aleph_{0}}\right)^{\omega}, \in_{H}^{*}\right\rangle$ where $H=\left\{\operatorname{id}^{k+1}: k<\omega\right\}$ and

$$
\begin{gathered}
x \in_{H}^{*} \varphi \text { iff }(\exists h \in H)(\forall i)|\varphi(i)| \leq h(i), \text { and } \\
(\exists m)(\forall i \geq m) x(i) \in \varphi(i) .
\end{gathered}
$$

Indeed $\mathfrak{b}\left(\mathbf{R}_{1}\right)=\operatorname{add}(\mathcal{N})$ and $\mathfrak{d}\left(\mathbf{R}_{1}\right)=\operatorname{cof}(\mathcal{N})$. (In fact $\left.(\forall h \in H) \mathbf{L c}(H) \preceq_{\mathrm{T}} \mathbf{L c}(h)\right)$
(Judah \& Shelah 1990) Any θ-centered poset is $\theta^{+}-\mathbf{R}_{1}$-good.
(Kamburelis 1989) Any subalgebra of random forcing is $\aleph_{1}-\mathbf{R}_{1}$-good.

Examples

Let $\mathbf{R}_{\mathrm{rp}}:=\left\langle[\omega]^{\aleph_{0}},[\omega]^{\aleph_{0}}, R_{\mathrm{rp}}\right\rangle$ where

$$
x R_{\mathrm{rp}} y \text { iff } x \supseteq^{*} y \text { or } \omega \backslash x \supseteq^{*} y(x \text { does not split } y)
$$

Examples

Let $\mathbf{R}_{\mathrm{rp}}:=\left\langle[\omega]^{\aleph_{0}},[\omega]^{\aleph_{0}}, R_{\mathrm{rp}}\right\rangle$ where

$$
x R_{\mathrm{rp}} y \text { iff } x \supseteq^{*} y \text { or } \omega \backslash x \supseteq^{*} y(x \text { does not split } y)
$$

\mathbf{R}_{rp} is Polish, $\mathfrak{b}\left(\mathbf{R}_{\mathrm{rp}}\right)=\mathfrak{s}$ and $\mathfrak{d}\left(\mathbf{R}_{\mathrm{rp}}\right)=\mathfrak{r}$.

Examples

Let $\mathbf{R}_{\mathrm{rp}}:=\left\langle[\omega]^{\aleph_{0}},[\omega]^{\aleph_{0}}, R_{\mathrm{rp}}\right\rangle$ where

$$
x R_{\mathrm{rp}} y \text { iff } x \supseteq^{*} y \text { or } \omega \backslash x \supseteq^{*} y(x \text { does not split } y)
$$

\mathbf{R}_{rp} is Polish, $\mathfrak{b}\left(\mathbf{R}_{\mathrm{rp}}\right)=\mathfrak{s}$ and $\mathfrak{d}\left(\mathbf{R}_{\mathrm{rp}}\right)=\mathfrak{r}$.

Baumgartner \& Dordal 1985

Hechler forcing is $\aleph_{1}-\mathbf{R}_{\mathrm{rp}}$-good.

Examples

Let $\mathbf{R}_{\mathrm{rp}}:=\left\langle[\omega]^{\aleph_{0}},[\omega]^{\aleph_{0}}, R_{\mathrm{rp}}\right\rangle$ where $x R_{\mathrm{rp}} y$ iff $x \supseteq^{*} y$ or $\omega \backslash x \supseteq^{*} y(x$ does not split $y)$
\mathbf{R}_{rp} is Polish, $\mathfrak{b}\left(\mathbf{R}_{\mathrm{rp}}\right)=\mathfrak{s}$ and $\mathfrak{d}\left(\mathbf{R}_{\mathrm{rp}}\right)=\mathfrak{r}$.

Baumgartner \& Dordal 1985

Hechler forcing is $\aleph_{1}-\mathbf{R}_{\mathrm{rp}}$-good.

Dow \& Shelah 2018

If F is a filter on ω generated by $<\theta$ many sets then \mathbb{L}_{F} is $\theta-\mathbf{R}_{\mathrm{rp}}$-good.

Left side (6 values)

Theorem (Goldstern \& M. \& Shelah 2016)

Let $\mu_{1} \leq \mu_{2} \leq \mu_{3}=\mu_{3}^{\aleph_{0}} \leq \mu_{4}=\mu_{4}^{\aleph_{0}}$ be uncountable regular cardinals, $\mu_{4}<\mu_{5}=\mu_{5}{ }^{<\mu_{4}} \leq 2^{\mu_{3}}$. Then, there is a ccc poset forcing

Left side (6 values)

Theorem (Goldstern \& M. \& Shelah 2016)

Let $\mu_{1} \leq \mu_{2} \leq \mu_{3}=\mu_{3}^{\aleph_{0}} \leq \mu_{4}=\mu_{4}^{\aleph_{0}}$ be uncountable regular cardinals, $\mu_{4}<\mu_{5}=\mu_{5}^{<\mu_{4}} \leq 2^{\mu_{3}}$. Then, there is a ccc poset forcing

(Goldstern \& Kellner \& Shelah 2017-2019) Can obtain such a ccc poset under GCH.

Natural attempt

Construct a FS it. of length μ_{5} alternating:
(1) LOC^{N} with $|N|<\mu_{1}$,
(2) $(\text { random) })^{N}$ with $|N|<\mu_{2}$,
(3) (Hechler) ${ }^{N}$ with $|N|<\mu_{3}$,
(c) \mathbb{E}^{N} with $|N|<\mu_{4}\left(\sigma\right.$-centered poset to increase $\left.\mathfrak{b}\left(\mathbf{R}_{4}\right)\right)$

Natural attempt

Construct a FS it. of length μ_{5} alternating:
(1) LOC^{N} with $|N|<\mu_{1}$,
(2) $(\text { random) })^{N}$ with $|N|<\mu_{2}$,
(3) (Hechler) ${ }^{N}$ with $|N|<\mu_{3}$,
(9) \mathbb{E}^{N} with $|N|<\mu_{4}\left(\sigma\right.$-centered poset to increase $\left.\mathfrak{b}\left(\mathbf{R}_{4}\right)\right)$
via book-keeping to get, for $i=1,2,3,4$, $\operatorname{COB}_{\mathbf{R}_{i}}\left(\mathbb{P}, S_{i}\right)$ with $\mu_{i} \leq \operatorname{cp}\left(S_{i}\right) \leq \operatorname{cf}\left(S_{i}\right) \leq\left|S_{i}\right|=\mu_{5}$.

Natural attempt

Construct a FS it. of length μ_{5} alternating:
(1) LOC^{N} with $|N|<\mu_{1}$,
(2) $(\text { random) })^{N}$ with $|N|<\mu_{2}$,
(3) (Hechler) ${ }^{N}$ with $|N|<\mu_{3}$,
(9) \mathbb{E}^{N} with $|N|<\mu_{4}\left(\sigma\right.$-centered poset to increase $\left.\mathfrak{b}\left(\mathbf{R}_{4}\right)\right)$
via book-keeping to get, for $i=1,2,3,4$, $\mathrm{COB}_{\mathbf{R}_{i}}\left(\mathbb{P}, S_{i}\right)$ with $\mu_{i} \leq \operatorname{cp}\left(S_{i}\right) \leq \operatorname{cf}\left(S_{i}\right) \leq\left|S_{i}\right|=\mu_{5}$.
Hence $\mu_{i} \leq \mathfrak{b}\left(\mathbf{R}_{i}\right)$ and $\mathfrak{d}\left(\mathbf{R}_{i}\right) \leq \mu_{5}$ (actually $\left.\mathfrak{c} \leq \mu_{5}\right)$.

Natural attempt (cont.)

Construct a FS it. of length μ_{5} alternating:
(1) LOC^{N} with $|N|<\mu_{1}$,
(2) (random) ${ }^{N}$ with $|N|<\mu_{2}$,
(3) (Hechler) ${ }^{N}$ with $|N|<\mu_{3}$,
(9) \mathbb{E}^{N} with $|N|<\mu_{4}\left(\sigma\right.$-centered poset to increase $\left.\mathfrak{b}\left(\mathbf{R}_{4}\right)\right)$

The iterands are, for $i=1,2,4$,

$$
\mu_{i}-\mathbf{R}_{i} \text {-good, so } \mathrm{LCU}_{\mathbf{R}_{i}}(\mathbb{P}, \theta) \text { for any regular } \mu_{i} \leq \theta \leq \mu_{5} \text {. }
$$

Natural attempt (cont.)

Construct a FS it. of length μ_{5} alternating:
(1) LOC^{N} with $|N|<\mu_{1}$,
(2) (random) ${ }^{N}$ with $|N|<\mu_{2}$,
(3) (Hechler) ${ }^{N}$ with $|N|<\mu_{3}$,
(9) \mathbb{E}^{N} with $|N|<\mu_{4}\left(\sigma\right.$-centered poset to increase $\left.\mathfrak{b}\left(\mathbf{R}_{4}\right)\right)$

The iterands are, for $i=1,2,4$,

$$
\mu_{i}-\mathbf{R}_{i} \text {-good, so } \operatorname{LCU}_{\mathbf{R}_{i}}(\mathbb{P}, \theta) \text { for any regular } \mu_{i} \leq \theta \leq \mu_{5} .
$$

Hence $\mathfrak{b}\left(\mathbf{R}_{i}\right) \leq \mu_{i}$ and $\mu_{5} \leq \mathfrak{d}\left(\mathbf{R}_{i}\right)$.

Natural attempt (cont.)

Iterands except \mathbb{E}^{N} are μ_{3} - \mathbf{R}_{3}-good.

Natural attempt (cont.)

Iterands except \mathbb{E}^{N} are $\mu_{3}-\mathbf{R}_{3}$-good.

Theorem (Miller 1981)

E is $\aleph_{1}-\mathbf{R}_{3}$-good.

Natural attempt (cont.)

Iterands except \mathbb{E}^{N} are μ_{3} - \mathbf{R}_{3}-good.

```
Theorem (Miller 1981)
E is }\mp@subsup{\aleph}{1}{}-\mp@subsup{\mathbf{R}}{3}{}\mathrm{ -good.
```

However
Theorem (Pawlikowski 1992)
There is a proper ω^{ω}-bounding poset forcing that \mathbb{E}^{V} adds a dominating real.

Filter-linkedness

Definition (M. 2018arxiv-2019pub)
Let P be a poset and F a (free) filter on ω.

Filter-linkedness

Definition (M. 2018arxiv-2019pub)

Let \mathbb{P} be a poset and F a (free) filter on ω.
(1) A set $Q \subseteq \mathbb{P}$ is F-linked if, for any sequence $\bar{p}=\left\langle p_{n}: n<\omega\right\rangle$ in Q, there is some $q \in \mathbb{P}$ forcing that $\left\{n<\omega: p_{n} \in \dot{G}\right\} \in F^{+}$.

Filter-linkedness

Definition (M. 2018arxiv-2019pub)

Let \mathbb{P} be a poset and F a (free) filter on ω.
(1) A set $Q \subseteq \mathbb{P}$ is F-linked if, for any sequence $\bar{p}=\left\langle p_{n}: n<\omega\right\rangle$ in Q, there is some $q \in \mathbb{P}$ forcing that $\left\{n<\omega: p_{n} \in \dot{G}\right\} \in F^{+}$.
(2) A set $Q \subseteq \mathbb{P}$ is ultrafilter-linked (uf-linked) if it is F-linked for any (ultra)filter F.

Filter-linkedness

Definition (M. 2018arxiv-2019pub)

Let \mathbb{P} be a poset and F a (free) filter on ω.
(1) A set $Q \subseteq \mathbb{P}$ is F-linked if, for any sequence $\bar{p}=\left\langle p_{n}: n<\omega\right\rangle$ in Q, there is some $q \in \mathbb{P}$ forcing that $\left\{n<\omega: p_{n} \in \dot{G}\right\} \in F^{+}$.
(2) A set $Q \subseteq \mathbb{P}$ is ultrafilter-linked (uf-linked) if it is F-linked for any (ultra)filter F.
(3) \mathbb{P} is μ - F-linked if $\mathbb{P}=\bigcup_{\alpha<\mu} Q_{\alpha}$ with $Q_{\alpha} F$-linked in \mathbb{P}.

Filter-linkedness

Definition (M. 2018arxiv-2019pub)

Let \mathbb{P} be a poset and F a (free) filter on ω.
(1) A set $Q \subseteq \mathbb{P}$ is F-linked if, for any sequence $\bar{p}=\left\langle p_{n}: n<\omega\right\rangle$ in Q, there is some $q \in \mathbb{P}$ forcing that $\left\{n<\omega: p_{n} \in \dot{G}\right\} \in F^{+}$.
(2) A set $Q \subseteq \mathbb{P}$ is ultrafilter-linked (uf-linked) if it is F-linked for any (ultra)filter F.
(3) \mathbb{P} is μ - F-linked if $\mathbb{P}=\bigcup_{\alpha<\mu} Q_{\alpha}$ with $Q_{\alpha} F$-linked in \mathbb{P}.
(4) \mathbb{P} is θ - F-Knaster if $\left(\forall A \in[\mathbb{P}]^{\theta}\right)\left(\exists Q \in[A]^{\theta}\right) Q$ is F-linked in \mathbb{P}.

Filter-linkedness

Definition (M. 2018arxiv-2019pub)

Let \mathbb{P} be a poset and F a (free) filter on ω.
(1) A set $Q \subseteq \mathbb{P}$ is F-linked if, for any sequence $\bar{p}=\left\langle p_{n}: n<\omega\right\rangle$ in Q, there is some $q \in \mathbb{P}$ forcing that $\left\{n<\omega: p_{n} \in \dot{G}\right\} \in F^{+}$.
(2) A set $Q \subseteq \mathbb{P}$ is ultrafilter-linked (uf-linked) if it is F-linked for any (ultra)filter F.
(3) \mathbb{P} is μ - F-linked if $\mathbb{P}=\bigcup_{\alpha<\mu} Q_{\alpha}$ with $Q_{\alpha} F$-linked in \mathbb{P}.
(4) \mathbb{P} is θ - F-Knaster if $\left(\forall A \in[\mathbb{P}]^{\theta}\right)\left(\exists Q \in[A]^{\theta}\right) Q$ is F-linked in \mathbb{P}.
(5) The notions μ-uf-linked and θ-uf-Knaster are defined similarly.

Filter-linkedness

Definition (M. 2018arxiv-2019pub)

Let \mathbb{P} be a poset and F a (free) filter on ω.
(1) A set $Q \subseteq \mathbb{P}$ is F-linked if, for any sequence $\bar{p}=\left\langle p_{n}: n<\omega\right\rangle$ in Q, there is some $q \in \mathbb{P}$ forcing that $\left\{n<\omega: p_{n} \in \dot{G}\right\} \in F^{+}$.
(2) A set $Q \subseteq \mathbb{P}$ is ultrafilter-linked (uf-linked) if it is F-linked for any (ultra)filter F.
(3) \mathbb{P} is μ - F-linked if $\mathbb{P}=\bigcup_{\alpha<\mu} Q_{\alpha}$ with $Q_{\alpha} F$-linked in \mathbb{P}.
(4) \mathbb{P} is θ - F-Knaster if $\left(\forall A \in[\mathbb{P}]^{\theta}\right)\left(\exists Q \in[A]^{\theta}\right) Q$ is F-linked in \mathbb{P}.
(5) The notions μ-uf-linked and θ-uf-Knaster are defined similarly.

Fr $:=\left\{x \subseteq \omega:|\omega \backslash x|<\aleph_{0}\right\}$ denotes the Frechet filter.

Filter-linkedness

Definition (M. 2018arxiv-2019pub)

Let \mathbb{P} be a poset and F a (free) filter on ω.
(1) A set $Q \subseteq \mathbb{P}$ is F-linked if, for any sequence $\bar{p}=\left\langle p_{n}: n<\omega\right\rangle$ in Q, there is some $q \in \mathbb{P}$ forcing that $\left\{n<\omega: p_{n} \in \dot{G}\right\} \in F^{+}$.
(2) A set $Q \subseteq \mathbb{P}$ is ultrafilter-linked (uf-linked) if it is F-linked for any (ultra)filter F.
(3) \mathbb{P} is μ - F-linked if $\mathbb{P}=\bigcup_{\alpha<\mu} Q_{\alpha}$ with $Q_{\alpha} F$-linked in \mathbb{P}.
(4) \mathbb{P} is θ - F-Knaster if $\left(\forall A \in[\mathbb{P}]^{\theta}\right)\left(\exists Q \in[A]^{\theta}\right) Q$ is F-linked in \mathbb{P}.
(5) The notions μ-uf-linked and θ-uf-Knaster are defined similarly.

Fr $:=\left\{x \subseteq \omega:|\omega \backslash x|<\aleph_{0}\right\}$ denotes the Frechet filter.

Lemma (M. 2018-2019)

If \mathbb{P} is ccc then $Q \subseteq \mathbb{P}$ is uf-linked iff it is Fr-linked.

Filter-linkedness (cont.)

For $x, y \in \omega^{\omega}$ denote $x \leq_{n} y$ iff $(\forall i \geq n) x(i) \leq y(i)$.

Lemma

If $Q \subseteq \mathbb{P}$ is Fr-linked and $\dot{y} \in \omega^{\omega}$ then

$$
\left(\exists y \in \omega^{\omega}\right)\left(\forall x \in \omega^{\omega}\right)(\forall n<\omega) x \not \not_{n} y \Rightarrow(\forall p \in Q) p \nVdash x \leq_{n} \dot{y} .
$$

Filter-linkedness (cont.)

For $x, y \in \omega^{\omega}$ denote $x \leq_{n} y$ iff $(\forall i \geq n) x(i) \leq y(i)$.

Lemma

If $Q \subseteq \mathbb{P}$ is Fr-linked and $\dot{y} \in \omega^{\omega}$ then

$$
\left(\exists y \in \omega^{\omega}\right)\left(\forall x \in \omega^{\omega}\right)(\forall n<\omega) x \not \not_{n} y \Rightarrow(\forall p \in Q) p \nVdash x \leq_{n} \dot{y} .
$$

Theorem

(M. 2018-2019) Any μ-Fr-linked poset is $\mu^{+}-\mathbf{R}_{3}$-good.

Filter-linkedness (cont.)

For $x, y \in \omega^{\omega}$ denote $x \leq_{n} y$ iff $(\forall i \geq n) x(i) \leq y(i)$.
Lemma
If $Q \subseteq \mathbb{P}$ is Fr-linked and $\dot{y} \in \omega^{\omega}$ then

$$
\left(\exists y \in \omega^{\omega}\right)\left(\forall x \in \omega^{\omega}\right)(\forall n<\omega) x \not \not_{n} y \Rightarrow(\forall p \in Q) p \nVdash x \leq_{n} \dot{y} .
$$

Theorem

(M. 2018-2019) Any μ-Fr-linked poset is $\mu^{+}-\mathbf{R}_{3}$-good.
(Brendle \& Cardona \& M. 2018arxiv) For $\theta \geq \aleph_{1}$ regular, any θ-Fr-Knaster poset preserves θ - \mathbf{R}_{3}-LCU sets.

Filter-linkedness (cont.)

For $x, y \in \omega^{\omega}$ denote $x \leq_{n} y$ iff $(\forall i \geq n) x(i) \leq y(i)$.
Lemma If $Q \subseteq \mathbb{P}$ is Fr-linked and $\dot{y} \in \omega^{\omega}$ then

$$
\left(\exists y \in \omega^{\omega}\right)\left(\forall x \in \omega^{\omega}\right)(\forall n<\omega) x \not \not_{n} y \Rightarrow(\forall p \in Q) p \nVdash x \leq_{n} \dot{y} .
$$

Theorem

(M. 2018-2019) Any μ-Fr-linked poset is $\mu^{+}-\mathbf{R}_{3}$-good.
(Brendle \& Cardona \& M. 2018arxiv) For $\theta \geq \aleph_{1}$ regular, any θ-Fr-Knaster poset preserves θ - \mathbf{R}_{3}-LCU sets.

GMS and GKS posets for the left side of Cichon's diagram are θ-Fr-Knaster for any regular $\mu_{3} \leq \theta \leq \mu_{5}$. In particular $\operatorname{LCU}_{\mathbf{R}_{3}}(\mathbb{P}, \theta)$ holds.

Eventually different real forcing

Definition

The poset \mathbb{E} is defined as follows.

Eventually different real forcing

Definition

The poset \mathbb{E} is defined as follows.
Conditions: (s, φ) where $s \in \omega^{<\omega}$ and $\varphi: \omega \rightarrow[\omega]^{<\aleph_{0}}$ such that $(\exists m<\omega)(\forall i<\omega)|\varphi(i)| \leq m$.

Eventually different real forcing

Definition

The poset \mathbb{E} is defined as follows.
Conditions: (s, φ) where $s \in \omega^{<\omega}$ and $\varphi: \omega \rightarrow[\omega]^{<\aleph_{0}}$ such that $(\exists m<\omega)(\forall i<\omega)|\varphi(i)| \leq m$.
Order: $\left(s^{\prime}, \varphi^{\prime}\right) \leq(s, \varphi)$ iff $s \subseteq s^{\prime},(\forall i) \varphi(i) \subseteq \varphi^{\prime}(i)$ and $s^{\prime}(i) \notin \varphi(i)$ for all $i \in\left|s^{\prime}\right| \backslash|s|$.

Eventually different real forcing

Definition

The poset \mathbb{E} is defined as follows.
Conditions: (s, φ) where $s \in \omega^{<\omega}$ and $\varphi: \omega \rightarrow[\omega]^{<\aleph_{0}}$ such that

$$
\begin{aligned}
& (\exists m<\omega)(\forall i<\omega)|\varphi(i)| \leq m \\
\text { Order: } & \left(s^{\prime}, \varphi^{\prime}\right) \leq(s, \varphi) \text { iff } s \subseteq s^{\prime},(\forall i) \varphi(i) \subseteq \varphi^{\prime}(i) \text { and } s^{\prime}(i) \notin \varphi(i) \\
& \text { for all } i \in\left|s^{\prime}\right| \backslash|s| .
\end{aligned}
$$

Clearly \mathbb{E} is σ-centered and the generic real $e:=\bigcup\{s: \exists \varphi((s, \varphi) \in G)\}$ is eventually different over the ground model (so it increases non (\mathcal{M})).

Examples of μ-uf-linked posets

Lemma (ess. Miller 1981)
$E_{(t, m)}:=\{(s, \varphi) \in \mathbb{E}: s=t,(\forall i)|\varphi(i)| \leq m\}$ is uf-linked. Hence \mathbb{E} is σ-uf-linked.

Examples of μ-uf-linked posets

Lemma (ess. Miller 1981)

$E_{(t, m)}:=\{(s, \varphi) \in \mathbb{E}: s=t,(\forall i)|\varphi(i)| \leq m\}$ is uf-linked. Hence \mathbb{E} is σ-uf-linked.

Lemma

Any complete Boolean algebra with a strictly-positive countable-additive measure is σ-Fr-linked.
(b / c the set $\left\{b \in \mathbb{B}: \operatorname{meas}(b) \geq \frac{1}{n}\right\}$ is Fr-linked)

Examples of μ-uf-linked posets

Lemma (ess. Miller 1981)

$E_{(t, m)}:=\{(s, \varphi) \in \mathbb{E}: s=t,(\forall i)|\varphi(i)| \leq m\}$ is uf-linked. Hence \mathbb{E} is σ-uf-linked.

Lemma

Any complete Boolean algebra with a strictly-positive countable-additive measure is σ-Fr-linked.
(b / c the set $\left\{b \in \mathbb{B}: \operatorname{meas}(b) \geq \frac{1}{n}\right\}$ is Fr-linked)

Lemma

If $|\mathbb{P}| \leq \mu$ then \mathbb{P} is μ-uf-linked.
(b/c singletons are uf-linked)

Left side (7 values)

Theorem (Brendle \& Cardona \& M. 2018)

Let $\aleph_{1} \leq \mu_{1} \leq \mu_{2} \leq \mu_{3} \leq \mu_{4} \leq \mu_{5}$ be regular and $\mu_{5} \leq \mu_{6}=\mu_{6}^{<\mu_{3}}$. Then, there is a ccc poset forcing

Simple matrix iterations

A simple matrix iteration is composed by
(1) a height γ and a length π,

Simple matrix iterations

A simple matrix iteration is composed by
(1) a height γ and a length π,
(2) $\Delta: \pi \backslash\{0\} \rightarrow \gamma \backslash \operatorname{Lim}$,

Simple matrix iterations

A simple matrix iteration is composed by
(1) a height γ and a length π,
(2) $\Delta: \pi \backslash\{0\} \rightarrow \gamma \backslash \mathrm{Lim}$,
(3) for $\alpha \leq \gamma$ a FS it.
$\left\langle\mathbb{P}_{\alpha, \xi}, \dot{\mathbb{Q}}_{\alpha, \xi}: \xi<\pi\right\rangle$ such that:

Simple matrix iterations

A simple matrix iteration is composed by
(1) a height γ and a length π,
(2) $\Delta: \pi \backslash\{0\} \rightarrow \gamma \backslash \operatorname{Lim}$,
(3) for $\alpha \leq \gamma$ a FS it.
$\left\langle\mathbb{P}_{\alpha, \xi}, \dot{\mathbb{Q}}_{\alpha, \xi}: \xi<\pi\right\rangle$ such that:
(9) $\mathbb{P}_{\alpha, 1}=\dot{\mathbb{Q}}_{\alpha, 0}=\mathbb{C}_{\alpha}$ (α-many

Cohen reals),

Simple matrix iterations

A simple matrix iteration is composed by
(1) a height γ and a length π,
(2) $\Delta: \pi \backslash\{0\} \rightarrow \gamma \backslash \operatorname{Lim}$,
(3) for $\alpha \leq \gamma$ a FS it.
$\left\langle\mathbb{P}_{\alpha, \xi}, \dot{\mathbb{Q}}_{\alpha, \xi}: \xi<\pi\right\rangle$ such that:
(9) $\mathbb{P}_{\alpha, 1}=\dot{\mathbb{Q}}_{\alpha, 0}=\mathbb{C}_{\alpha}$ (α-many

Cohen reals),

(6) for $1 \leq \xi<\pi$ there is a $\dot{\mathbb{Q}}_{\xi}^{*} \in V_{\Delta(\xi), \xi}$ such that

$$
\dot{\mathbb{Q}}_{\alpha, \xi}= \begin{cases}\dot{\mathbb{Q}}_{\xi}^{*} & \text { if } \alpha \geq \Delta(\xi) \\ \{0\} & \text { if } \alpha<\Delta(\xi)\end{cases}
$$

Properties

Assume $\operatorname{cf}(\gamma) \geq \omega_{1}$ and $\mathbb{P}_{\gamma, \pi}$ is ccc.

Properties

Assume $\operatorname{cf}(\gamma) \geq \omega_{1}$ and $\mathbb{P}_{\gamma, \pi}$ is ccc.

Blass \& Shelah 1989, Brendle \& Fischer 2011

(1) $\alpha \leq \beta$ and $\xi \leq \eta$ implies $\mathbb{P}_{\alpha, \xi} \lessdot \mathbb{P}_{\beta, \eta}$.

Properties

Assume $\operatorname{cf}(\gamma) \geq \omega_{1}$ and $\mathbb{P}_{\gamma, \pi}$ is ccc.
Blass \& Shelah 1989, Brendle \& Fischer 2011
(1) $\alpha \leq \beta$ and $\xi \leq \eta$ implies $\mathbb{P}_{\alpha, \xi} \lessdot \mathbb{P}_{\beta, \eta}$.
(2) If $x \in \mathbb{R} \cap V_{\gamma, \xi}$ then $x \in V_{\alpha, \xi}$ for some $\alpha<\gamma$.

Preservation 2

Assume $\operatorname{cf}(\gamma) \geq \omega_{1}, \mathbb{P}_{\gamma, \pi}$ is ccc and $\mathbf{R}=\langle X, Y, R\rangle$ is Polish.

Preservation 2

Assume $\operatorname{cf}(\gamma) \geq \omega_{1}, \mathbb{P}_{\gamma, \pi}$ is ccc and $\mathbf{R}=\langle X, Y, R\rangle$ is Polish. Let $c_{\alpha} \in X \cap V_{\alpha+1,1}$ be the Cohen real over $V_{\alpha, 1}$ added by $\mathbb{P}_{\alpha+1,1}$.

Preservation 2

Assume $\operatorname{cf}(\gamma) \geq \omega_{1}, \mathbb{P}_{\gamma, \pi}$ is ccc and $\mathbf{R}=\langle X, Y, R\rangle$ is Polish.
Let $c_{\alpha} \in X \cap V_{\alpha+1,1}$ be the Cohen real over $V_{\alpha, 1}$ added by $\mathbb{P}_{\alpha+1,1}$.
Clearly $\left(\forall y \in Y \cap V_{\alpha, 1}\right) \neg\left(c_{\alpha} R y\right)$.

Preservation 2

Assume $\operatorname{cf}(\gamma) \geq \omega_{1}, \mathbb{P}_{\gamma, \pi}$ is ccc and $\mathbf{R}=\langle X, Y, R\rangle$ is Polish. Let $c_{\alpha} \in X \cap V_{\alpha+1,1}$ be the Cohen real over $V_{\alpha, 1}$ added by $\mathbb{P}_{\alpha+1,1}$.

Clearly $\left(\forall y \in Y \cap V_{\alpha, 1}\right) \neg\left(c_{\alpha} R y\right)$.

Brendle \& Fischer 2011

(1) $\left(\forall y \in Y \cap V_{\alpha, \pi}\right) \neg\left(c_{\alpha} R y\right)$.

Preservation 2

Assume $\operatorname{cf}(\gamma) \geq \omega_{1}, \mathbb{P}_{\gamma, \pi}$ is ccc and $\mathbf{R}=\langle X, Y, R\rangle$ is Polish. Let $c_{\alpha} \in X \cap V_{\alpha+1,1}$ be the Cohen real over $V_{\alpha, 1}$ added by $\mathbb{P}_{\alpha+1,1}$.

Clearly $\left(\forall y \in Y \cap V_{\alpha, 1}\right) \neg\left(c_{\alpha} R y\right)$.

Brendle \& Fischer 2011

(1) $\left(\forall y \in Y \cap V_{\alpha, \pi}\right) \neg\left(c_{\alpha} R y\right)$.
(2) $\left\{c_{\alpha}: \alpha<\gamma\right\}$ is γ-R-LCU.
(3) $\operatorname{LCU}_{\mathbf{R}}\left(\mathbb{P}_{\gamma, \pi}, \gamma\right)$.

Proof of the theorem

First force with $\mathbb{C}_{\mu_{6}}$, so $\operatorname{LCU}_{\mathbf{R}_{i}}(\mathbb{C}, \theta)$ for any regular $\aleph_{1} \leq \theta \leq \mu_{6}$.

Proof of the theorem

First force with $\mathbb{C}_{\mu_{6}}$, so $\operatorname{LCU}_{\mathbf{R}_{i}}(\mathbb{C}, \theta)$ for any regular $\aleph_{1} \leq \theta \leq \mu_{6}$. Afterwards

Height μ_{5}, length $\pi:=\mu_{6} \mu_{5} \mu 4$,

Proof of the theorem

First force with $\mathbb{C}_{\mu_{6}}$, so $\operatorname{LCU}_{\mathbf{R}_{i}}(\mathbb{C}, \theta)$ for any regular $\aleph_{1} \leq \theta \leq \mu_{6}$. Afterwards

Height μ_{5}, length $\pi:=\mu_{6} \mu_{5} \mu 4$, $\mathbb{S}_{1}=\operatorname{LOC}, \mathbb{S}_{2}=$ random, $\mathbb{S}_{3}=$ Hechler, $\left|N_{\xi}\right|<\mu_{i}(\mathrm{i}=1,2,3)$

Proof of the theorem

First force with $\mathbb{C}_{\mu_{6}}$, so $\operatorname{LCU}_{\mathbf{R}_{i}}(\mathbb{C}, \theta)$ for any regular $\aleph_{1} \leq \theta \leq \mu_{6}$. Afterwards

Height μ_{5}, length $\pi:=\mu_{6} \mu_{5} \mu 4$, $\mathbb{S}_{1}=\operatorname{LOC}, \mathbb{S}_{2}=$ random, $\mathbb{S}_{3}=$ Hechler, $\left|N_{\xi}\right|<\mu_{i}(\mathrm{i}=1,2,3)$
Δ and N_{ξ} are constructed so that:
(1) For $i=1,2,3, \operatorname{COB}_{\mathbf{R}_{i}}\left(\mathbb{P}, S_{i}\right)$ where $\mu_{i} \leq \operatorname{cp}\left(S_{i}\right) \leq \operatorname{cf}\left(S_{i}\right) \leq\left|S_{i}\right|=\mu_{6}$, so $\mu_{i} \leq \mathfrak{b}\left(\mathbf{R}_{i}\right), \mathfrak{d}\left(\mathbf{R}_{i}\right) \leq \mu_{6}$.
Δ and N_{ξ} are constructed so that:
(1) For $i=1,2,3, \operatorname{COB}_{\mathbf{R}_{i}}\left(\mathbb{P}, S_{i}\right)$ where $\mu_{i} \leq \operatorname{cp}\left(S_{i}\right) \leq \operatorname{cf}\left(S_{i}\right) \leq\left|S_{i}\right|=\mu_{6}$, so $\mu_{i} \leq \mathfrak{b}\left(\mathbf{R}_{i}\right)$, $\mathfrak{d}\left(\mathbf{R}_{i}\right) \leq \mu_{6}$.
(2) $S_{4}:=\left\{\mu_{6} \rho: 0<\rho<\mu_{5} \mu_{4}\right\}$, ordered by $\mu_{6} \rho \leq S_{4} \mu_{6} \rho^{\prime}$ iff $\rho \leq \rho^{\prime}$ and $\Delta\left(\mu_{6} \rho\right) \leq \Delta\left(\mu_{6} \rho^{\prime}\right)$, satisfies $\mu_{4} \leq \operatorname{cp}\left(S_{4}\right) \leq \operatorname{cf}\left(S_{4}\right) \leq\left|S_{4}\right|=\mu_{5}$.
Δ and N_{ξ} are constructed so that:
(1) For $i=1,2,3, \operatorname{COB}_{\mathbf{R}_{i}}\left(\mathbb{P}, S_{i}\right)$ where $\mu_{i} \leq \operatorname{cp}\left(S_{i}\right) \leq \operatorname{cf}\left(S_{i}\right) \leq\left|S_{i}\right|=\mu_{6}$, so $\mu_{i} \leq \mathfrak{b}\left(\mathbf{R}_{i}\right), \mathfrak{d}\left(\mathbf{R}_{i}\right) \leq \mu_{6}$.
(2) $S_{4}:=\left\{\mu_{6} \rho: 0<\rho<\mu_{5} \mu_{4}\right\}$, ordered by $\mu_{6} \rho \leq S_{4} \mu_{6} \rho^{\prime}$ iff $\rho \leq \rho^{\prime}$ and $\Delta\left(\mu_{6} \rho\right) \leq \Delta\left(\mu_{6} \rho^{\prime}\right)$, satisfies $\mu_{4} \leq \operatorname{cp}\left(S_{4}\right) \leq \operatorname{cf}\left(S_{4}\right) \leq\left|S_{4}\right|=\mu_{5}$.
(8) For $\eta \in S_{4}$ let $e_{\eta} \in \omega^{\omega}$ be the generic ev. diff. real over $V_{\Delta(\eta), \eta}$.
Δ and N_{ξ} are constructed so that:
(1) For $i=1,2,3, \operatorname{COB}_{\mathbf{R}_{i}}\left(\mathbb{P}, S_{i}\right)$ where $\mu_{i} \leq \operatorname{cp}\left(S_{i}\right) \leq \operatorname{cf}\left(S_{i}\right) \leq\left|S_{i}\right|=\mu_{6}$, so $\mu_{i} \leq \mathfrak{b}\left(\mathbf{R}_{i}\right), \mathfrak{d}\left(\mathbf{R}_{i}\right) \leq \mu_{6}$.
(2) $S_{4}:=\left\{\mu_{6} \rho: 0<\rho<\mu_{5} \mu_{4}\right\}$, ordered by $\mu_{6} \rho \leq_{S_{4}} \mu_{6} \rho^{\prime}$ iff $\rho \leq \rho^{\prime}$ and $\Delta\left(\mu_{6} \rho\right) \leq \Delta\left(\mu_{6} \rho^{\prime}\right)$, satisfies $\mu_{4} \leq \operatorname{cp}\left(S_{4}\right) \leq \operatorname{cf}\left(S_{4}\right) \leq\left|S_{4}\right|=\mu_{5}$.
(3) For $\eta \in S_{4}$ let $e_{\eta} \in \omega^{\omega}$ be the generic ev. diff. real over $V_{\Delta(\eta), \eta}$. $M_{\eta}:=\left\{x \in \omega^{\omega}: x \not \neq^{*} e_{\eta}\right\} \in \mathcal{M},\left\{M_{\eta}: \eta \in S_{4}\right\}$ is $S_{4}-\mathbf{C}_{\mathcal{M}}$-COB,
Δ and N_{ξ} are constructed so that:
(1) For $i=1,2,3, \operatorname{COB}_{\mathbf{R}_{i}}\left(\mathbb{P}, S_{i}\right)$ where $\mu_{i} \leq \operatorname{cp}\left(S_{i}\right) \leq \operatorname{cf}\left(S_{i}\right) \leq\left|S_{i}\right|=\mu_{6}$, so $\mu_{i} \leq \mathfrak{b}\left(\mathbf{R}_{i}\right), \mathfrak{d}\left(\mathbf{R}_{i}\right) \leq \mu_{6}$.
(2) $S_{4}:=\left\{\mu_{6} \rho: 0<\rho<\mu_{5} \mu_{4}\right\}$, ordered by $\mu_{6} \rho \leq S_{4} \mu_{6} \rho^{\prime}$ iff $\rho \leq \rho^{\prime}$ and $\Delta\left(\mu_{6} \rho\right) \leq \Delta\left(\mu_{6} \rho^{\prime}\right)$, satisfies $\mu_{4} \leq \operatorname{cp}\left(S_{4}\right) \leq \operatorname{cf}\left(S_{4}\right) \leq\left|S_{4}\right|=\mu_{5}$.
(3) For $\eta \in S_{4}$ let $e_{\eta} \in \omega^{\omega}$ be the generic ev. diff. real over $V_{\Delta(\eta), \eta}$. $M_{\eta}:=\left\{x \in \omega^{\omega}: x \not \neq^{*} e_{\eta}\right\} \in \mathcal{M},\left\{M_{\eta}: \eta \in S_{4}\right\}$ is $S_{4}-\mathbf{C}_{\mathcal{M}}$-COB, so $\mathrm{COB}_{\mathbf{R}_{4}}\left(\mathbb{P}, S_{4}\right)\left(\mathrm{b} / \mathrm{c} \mathbf{C}_{\mathcal{M}} \cong_{\mathrm{T}} \mathbf{R}_{4}\right)$, hence $\mu_{4} \leq \mathfrak{b}\left(\mathbf{R}_{4}\right)$ and $\mathfrak{d}\left(\mathbf{R}_{4}\right) \leq \mu_{5}$.
Δ and N_{ξ} are constructed so that:
(1) For $i=1,2,3, \operatorname{COB}_{\mathbf{R}_{i}}\left(\mathbb{P}, S_{i}\right)$ where $\mu_{i} \leq \operatorname{cp}\left(S_{i}\right) \leq \operatorname{cf}\left(S_{i}\right) \leq\left|S_{i}\right|=\mu_{6}$, so $\mu_{i} \leq \mathfrak{b}\left(\mathbf{R}_{i}\right), \mathfrak{d}\left(\mathbf{R}_{i}\right) \leq \mu_{6}$.
(2) $S_{4}:=\left\{\mu_{6} \rho: 0<\rho<\mu_{5} \mu_{4}\right\}$, ordered by $\mu_{6} \rho \leq S_{4} \mu_{6} \rho^{\prime}$ iff $\rho \leq \rho^{\prime}$ and $\Delta\left(\mu_{6} \rho\right) \leq \Delta\left(\mu_{6} \rho^{\prime}\right)$, satisfies $\mu_{4} \leq \operatorname{cp}\left(S_{4}\right) \leq \operatorname{cf}\left(S_{4}\right) \leq\left|S_{4}\right|=\mu_{5}$.
(3) For $\eta \in S_{4}$ let $e_{\eta} \in \omega^{\omega}$ be the generic ev. diff. real over $V_{\Delta(\eta), \eta}$. $M_{\eta}:=\left\{x \in \omega^{\omega}: x \not \neq^{*} e_{\eta}\right\} \in \mathcal{M},\left\{M_{\eta}: \eta \in S_{4}\right\}$ is $S_{4}-\mathbf{C}_{\mathcal{M}^{-}}$COB, so $\mathrm{COB}_{\mathbf{R}_{4}}\left(\mathbb{P}, S_{4}\right)\left(\mathrm{b} / \mathrm{c} \mathbf{C}_{\mathcal{M}} \cong_{\mathrm{T}} \mathbf{R}_{4}\right)$, hence $\mu_{4} \leq \mathfrak{b}\left(\mathbf{R}_{4}\right)$ and $\mathfrak{d}\left(\mathbf{R}_{4}\right) \leq \mu_{5}$.
On the other hand
(9) For $i=1,2$ iterands are \mathbf{R}_{i}-good, so $\operatorname{LCU}_{\mathbf{R}_{i}}(\mathbb{P}, \theta)$ holds for regular $\mu_{i} \leq \theta \leq \mu_{6}$, Hence $\mathfrak{b}\left(\mathbf{R}_{i}\right) \leq \mu_{i}$ and $\mu_{6} \leq \mathfrak{d}\left(\mathbf{R}_{i}\right)$.
Δ and N_{ξ} are constructed so that:
(1) For $i=1,2,3, \operatorname{COB}_{\mathbf{R}_{i}}\left(\mathbb{P}, S_{i}\right)$ where $\mu_{i} \leq \operatorname{cp}\left(S_{i}\right) \leq \operatorname{cf}\left(S_{i}\right) \leq\left|S_{i}\right|=\mu_{6}$, so $\mu_{i} \leq \mathfrak{b}\left(\mathbf{R}_{i}\right), \mathfrak{d}\left(\mathbf{R}_{i}\right) \leq \mu_{6}$.
(2) $S_{4}:=\left\{\mu_{6} \rho: 0<\rho<\mu_{5} \mu_{4}\right\}$, ordered by $\mu_{6} \rho \leq S_{4} \mu_{6} \rho^{\prime}$ iff $\rho \leq \rho^{\prime}$ and $\Delta\left(\mu_{6} \rho\right) \leq \Delta\left(\mu_{6} \rho^{\prime}\right)$, satisfies $\mu_{4} \leq \operatorname{cp}\left(S_{4}\right) \leq \operatorname{cf}\left(S_{4}\right) \leq\left|S_{4}\right|=\mu_{5}$.
(3) For $\eta \in S_{4}$ let $e_{\eta} \in \omega^{\omega}$ be the generic ev. diff. real over $V_{\Delta(\eta), \eta}$. $M_{\eta}:=\left\{x \in \omega^{\omega}: x \not \neq^{*} e_{\eta}\right\} \in \mathcal{M},\left\{M_{\eta}: \eta \in S_{4}\right\}$ is $S_{4}-\mathbf{C}_{\mathcal{M}^{-}}$COB, so $\mathrm{COB}_{\mathbf{R}_{4}}\left(\mathbb{P}, S_{4}\right)\left(\mathrm{b} / \mathrm{c} \mathbf{C}_{\mathcal{M}} \cong_{\mathrm{T}} \mathbf{R}_{4}\right)$, hence $\mu_{4} \leq \mathfrak{b}\left(\mathbf{R}_{4}\right)$ and $\mathfrak{d}\left(\mathbf{R}_{4}\right) \leq \mu_{5}$.
On the other hand
(9) For $i=1,2$ iterands are \mathbf{R}_{i}-good, so $\operatorname{LCU}_{\mathbf{R}_{i}}(\mathbb{P}, \theta)$ holds for regular $\mu_{i} \leq \theta \leq \mu_{6}$, Hence $\mathfrak{b}\left(\mathbf{R}_{i}\right) \leq \mu_{i}$ and $\mu_{6} \leq \mathfrak{d}\left(\mathbf{R}_{i}\right)$.
(3) Since $\operatorname{cf}(\pi)=\mu_{4}, \operatorname{LCU}_{\mathbf{R}_{4}}\left(\mathbb{P}, \mu_{4}\right)$ holds, so $\mathfrak{b}\left(\mathbf{R}_{4}\right) \leq \mu_{4}$.
Δ and N_{ξ} are constructed so that:
(1) For $i=1,2,3, \operatorname{COB}_{\mathbf{R}_{i}}\left(\mathbb{P}, S_{i}\right)$ where $\mu_{i} \leq \operatorname{cp}\left(S_{i}\right) \leq \operatorname{cf}\left(S_{i}\right) \leq\left|S_{i}\right|=\mu_{6}$, so $\mu_{i} \leq \mathfrak{b}\left(\mathbf{R}_{i}\right), \mathfrak{d}\left(\mathbf{R}_{i}\right) \leq \mu_{6}$.
(2) $S_{4}:=\left\{\mu_{6} \rho: 0<\rho<\mu_{5} \mu_{4}\right\}$, ordered by $\mu_{6} \rho \leq S_{4} \mu_{6} \rho^{\prime}$ iff $\rho \leq \rho^{\prime}$ and $\Delta\left(\mu_{6} \rho\right) \leq \Delta\left(\mu_{6} \rho^{\prime}\right)$, satisfies $\mu_{4} \leq \operatorname{cp}\left(S_{4}\right) \leq \operatorname{cf}\left(S_{4}\right) \leq\left|S_{4}\right|=\mu_{5}$.
(3) For $\eta \in S_{4}$ let $e_{\eta} \in \omega^{\omega}$ be the generic ev. diff. real over $V_{\Delta(\eta), \eta}$. $M_{\eta}:=\left\{x \in \omega^{\omega}: x \not \neq^{*} e_{\eta}\right\} \in \mathcal{M},\left\{M_{\eta}: \eta \in S_{4}\right\}$ is $S_{4}-\mathbf{C}_{\mathcal{M}}$-COB, so $\mathrm{COB}_{\mathbf{R}_{4}}\left(\mathbb{P}, S_{4}\right)\left(\mathrm{b} / \mathrm{c} \mathbf{C}_{\mathcal{M}} \cong_{\mathrm{T}} \mathbf{R}_{4}\right)$, hence $\mu_{4} \leq \mathfrak{b}\left(\mathbf{R}_{4}\right)$ and $\mathfrak{d}\left(\mathbf{R}_{4}\right) \leq \mu_{5}$.
On the other hand
(9) For $i=1,2$ iterands are \mathbf{R}_{i}-good, so $\mathrm{LCU}_{\mathbf{R}_{i}}(\mathbb{P}, \theta)$ holds for regular $\mu_{i} \leq \theta \leq \mu_{6}$, Hence $\mathfrak{b}\left(\mathbf{R}_{i}\right) \leq \mu_{i}$ and $\mu_{6} \leq \mathfrak{d}\left(\mathbf{R}_{i}\right)$.
(0) Since $\operatorname{cf}(\pi)=\mu_{4}, \operatorname{LCU}_{\mathbf{R}_{4}}\left(\mathbb{P}, \mu_{4}\right)$ holds, so $\mathfrak{b}\left(\mathbf{R}_{4}\right) \leq \mu_{4}$.
(0) $\operatorname{LCU}_{\mathbf{R}_{4}}\left(\mathbb{P}, \mu_{5}\right)$ (by Preservation 2), so $\mu_{5} \leq \mathfrak{d}\left(\mathbf{R}_{4}\right)$

Proof (cont.)

It remains to show $\mathfrak{b}\left(\mathbf{R}_{3}\right) \leq \mu_{3}$ and $\mu_{6} \leq \mathfrak{d}\left(\mathbf{R}_{3}\right)$.

Proof (cont.)

It remains to show $\mathfrak{b}\left(\mathbf{R}_{3}\right) \leq \mu_{3}$ and $\mu_{6} \leq \mathfrak{d}\left(\mathbf{R}_{3}\right)$.
Enough to show $\operatorname{LCU}_{\mathbf{R}_{3}}(\mathbb{P}, \theta)$ for any regular $\mu_{3} \leq \theta \leq \mu_{6}$.

Proof (cont.)

It remains to show $\mathfrak{b}\left(\mathbf{R}_{3}\right) \leq \mu_{3}$ and $\mu_{6} \leq \mathfrak{d}\left(\mathbf{R}_{3}\right)$.
Enough to show $\operatorname{LCU}_{\mathbf{R}_{3}}(\mathbb{P}, \theta)$ for any regular $\mu_{3} \leq \theta \leq \mu_{6}$. Recall we have $\operatorname{LCU}_{\mathbf{R}_{3}}\left(\mathbb{C}_{\mu_{6}}, \theta\right)$.

Proof (cont.)

It remains to show $\mathfrak{b}\left(\mathbf{R}_{3}\right) \leq \mu_{3}$ and $\mu_{6} \leq \mathfrak{d}\left(\mathbf{R}_{3}\right)$.
Enough to show $\operatorname{LCU}_{\mathbf{R}_{3}}(\mathbb{P}, \theta)$ for any regular $\mu_{3} \leq \theta \leq \mu_{6}$. Recall we have $\operatorname{LCU}_{\mathbf{R}_{3}}\left(\mathbb{C}_{\mu_{6}}, \theta\right)$. Also

For any $0<\xi<\pi, V_{\Delta(\xi), \xi} \models$ " Q_{ξ}^{*} is $<\mu_{3}$-uf-linked". (though it may not be true in $V_{\mu_{5}, \xi}$)

Proof (cont.)

It remains to show $\mathfrak{b}\left(\mathbf{R}_{3}\right) \leq \mu_{3}$ and $\mu_{6} \leq \mathfrak{d}\left(\mathbf{R}_{3}\right)$.
Enough to show $\operatorname{LCU}_{\mathbf{R}_{3}}(\mathbb{P}, \theta)$ for any regular $\mu_{3} \leq \theta \leq \mu_{6}$. Recall we have $\operatorname{LCU}_{\mathbf{R}_{3}}\left(\mathbb{C}_{\mu_{6}}, \theta\right)$. Also

$$
\text { For any } 0<\xi<\pi, V_{\Delta(\xi), \xi} \models \text { " } \mathrm{Q}_{\xi}^{*} \text { is }<\mu_{3} \text {-uf-linked" }
$$ (though it may not be true in $V_{\mu_{5}, \xi}$)

We are done if we show that the matrix is μ_{3}-uf-Knaster.

κ-uf-Knaster matrices

Theorem (Brendle \& Cardona \& M. 2018)
 Let $\kappa \geq \aleph_{1}$ be regular. If \mathbb{P} is a simple matrix iteration such that $V_{\Delta(\xi), \xi}=$ " \mathbb{Q}_{ξ}^{*} is $<\kappa$-uf-linked" for any $0<\xi<\pi$, then \mathbb{P} is κ-uf-Knaster.

κ-uf-Knaster matrices

Theorem (Brendle \& Cardona \& M. 2018)

Let $\kappa \geq \aleph_{1}$ be regular. If \mathbb{P} is a simple matrix iteration such that $V_{\Delta(\xi), \xi}=$ " \mathbb{Q}_{ξ}^{*} is $<\kappa$-uf-linked" for any $0<\xi<\pi$, then \mathbb{P} is κ-uf-Knaster.
μ-Fr-linked $\Rightarrow \mu$-Fin-cc (union of μ-many Fin-cc subsets)
$\left(Q \subseteq \mathbb{Q}\right.$ is Fin-cc if $(\forall A \subseteq Q)\left(A\right.$ antichain in $\left.\left.\mathbb{P} \Rightarrow|A|<\aleph_{0}\right)\right)$

κ-uf-Knaster matrices

Theorem (Brendle \& Cardona \& M. 2018)

Let $\kappa \geq \aleph_{1}$ be regular. If \mathbb{P} is a simple matrix iteration such that $V_{\Delta(\xi), \xi}=$ " \mathbb{Q}_{ξ}^{*} is $<\kappa$-uf-linked" for any $0<\xi<\pi$, then \mathbb{P} is κ-uf-Knaster.
μ-Fr-linked $\Rightarrow \mu$-Fin-cc (union of μ-many Fin-cc subsets) $\left(Q \subseteq \mathbb{Q}\right.$ is Fin-cc if $(\forall A \subseteq Q)\left(A\right.$ antichain in $\left.\left.\mathbb{P} \Rightarrow|A|<\aleph_{0}\right)\right)$ So $V_{\gamma, \xi} \models$ " \mathbb{Q}_{ξ}^{*} is $<\kappa$-Fin-cc", hence κ-cc. Thus \mathbb{P} is κ-cc.

κ-uf-Knaster matrices

Theorem (Brendle \& Cardona \& M. 2018)

Let $\kappa \geq \aleph_{1}$ be regular. If \mathbb{P} is a simple matrix iteration such that $V_{\Delta(\xi), \xi}=$ " \mathbb{Q}_{ξ}^{*} is $<\kappa$-uf-linked" for any $0<\xi<\pi$, then \mathbb{P} is κ-uf-Knaster.
μ-Fr-linked $\Rightarrow \mu$-Fin-cc (union of μ-many Fin-cc subsets) $\left(Q \subseteq \mathbb{Q}\right.$ is Fin-cc if $(\forall A \subseteq Q)\left(A\right.$ antichain in $\left.\left.\mathbb{P} \Rightarrow|A|<\aleph_{0}\right)\right)$ So $V_{\gamma, \xi}=$ " \mathbb{Q}_{ξ}^{*} is $<\kappa$-Fin-cc", hence κ-cc. Thus \mathbb{P} is κ-cc.

For each $0<\xi<\pi$ there is some cardinal $\theta_{\xi}<\kappa$ and $\mathbb{P}_{\Delta(\xi), \xi}$-names $\left\langle\dot{Q}_{\xi, \zeta}: \zeta<\theta_{\xi}\right\rangle$ of uf-linked subsets of $\dot{\mathbb{Q}}^{*}$ s.t. $\dot{\mathbb{Q}}_{\xi}^{*}=\bigcup_{\zeta<\theta_{\xi}} \dot{Q}_{\xi, \zeta}$.

Main Lemma

Wlog $p \in \mathbb{P}$ iff $(\forall \xi \in \operatorname{supp} p) p(\xi) \in \dot{\mathbb{Q}}_{\xi}$ is a $\mathbb{P}_{\Delta(\xi), \xi^{-}}$-name, and there is some $f_{p} \in \prod_{\xi \in \text { suppp }} \theta_{\xi}$ s.t. $\Vdash_{\Delta(\xi), \xi} p(\xi) \in \dot{Q}_{\xi, f_{p}(\xi)}$.

Main Lemma

Wlog $p \in \mathbb{P}$ iff $(\forall \xi \in \operatorname{supp} p) p(\xi) \in \dot{\mathbb{Q}}_{\xi}$ is a $\mathbb{P}_{\Delta(\xi), \xi}$-name, and there is some $f_{p} \in \prod_{\xi \in \text { suppp }} \theta_{\xi}$ s.t. $\Vdash_{\Delta(\xi), \xi} p(\xi) \in \dot{Q}_{\xi, f_{p}(\xi)}$.

Say that $B \subseteq \mathbb{P}$ is uniform if
(1) $\{\operatorname{domp}: p \in B\}$ forms a Δ-system with root r^{*}.

Main Lemma

Wlog $p \in \mathbb{P}$ iff $(\forall \xi \in \operatorname{supp} p) p(\xi) \in \dot{\mathbb{Q}}_{\xi}$ is a $\mathbb{P}_{\Delta(\xi), \xi}$-name, and there is some $f_{p} \in \prod_{\xi \in \text { suppp }} \theta_{\xi}$ s.t. $\Vdash_{\Delta(\xi), \xi} p(\xi) \in \dot{Q}_{\xi, f_{p}(\xi)}$.

Say that $B \subseteq \mathbb{P}$ is uniform if
(1) $\{\operatorname{domp}: p \in B\}$ forms a Δ-system with root r^{*}.
(2) $\left(\exists f^{*} \in \prod_{\xi \in r^{*}} \theta_{\xi}\right)\left(\forall p, p^{\prime} \in B\right) f_{p}\left\lceil r^{*}=f^{*}\right.$.

Main Lemma

Wlog $p \in \mathbb{P}$ iff $(\forall \xi \in \operatorname{supp} p) p(\xi) \in \dot{\mathbb{Q}}_{\xi}$ is a $\mathbb{P}_{\Delta(\xi), \xi^{\xi}}$-name, and there is some $f_{p} \in \prod_{\xi \in \text { suppp }} \theta_{\xi}$ s.t. $\Vdash_{\Delta(\xi), \xi} p(\xi) \in \dot{Q}_{\xi, f_{p}(\xi)}$.

Say that $B \subseteq \mathbb{P}$ is uniform if
(1) $\{\operatorname{domp}: p \in B\}$ forms a Δ-system with root r^{*}.
(2) $\left(\exists f^{*} \in \prod_{\xi \in r^{*}} \theta_{\xi}\right)\left(\forall p, p^{\prime} \in B\right) f_{p} \backslash r^{*}=f^{*}$.

Main Lemma

If D is a non-principal ultrafilter on ω and $\left\langle p_{n}: n<\omega\right\rangle \subseteq \mathbb{P}$ is uniform, then, in $V^{\mathbb{P}}$, there is some ultrafilter $D^{*} \supseteq D$ such that $\left\{n<\omega: p_{n} \in G_{\mathbb{P}}\right\} \in D^{*}$.

Proof of the theorem

Fix $A \in[\mathbb{P}]^{\kappa}$.

Proof of the theorem

Fix $A \in[\mathbb{P}]^{\kappa}$.
There is some uniform $B \in[A]^{\kappa}$ (by the Δ-system lemma).

Proof of the theorem

Fix $A \in[\mathbb{P}]^{\kappa}$.
There is some uniform $B \in[A]^{\kappa}$ (by the Δ-system lemma).

Claim

B is uf-linked.

Proof of the theorem

Fix $A \in[\mathbb{P}]^{\kappa}$.
There is some uniform $B \in[A]^{\kappa}$ (by the Δ-system lemma).

Claim

B is uf-linked.
Fix an uf D and let $\bar{p}=\left\langle p_{n}: n<\omega\right\rangle$.

Proof of the theorem

Fix $A \in[\mathbb{P}]^{\kappa}$.
There is some uniform $B \in[A]^{\kappa}$ (by the Δ-system lemma).

Claim

B is uf-linked.
Fix an uf D and let $\bar{p}=\left\langle p_{n}: n<\omega\right\rangle$. Since \bar{p} is uniform, \mathbb{P} forces that $\left\{n<\omega: p_{n} \in \dot{G}\right\} \in D^{*}$ for some uf $D^{*} \supseteq D$,

Proof of the theorem

Fix $A \in[\mathbb{P}]^{\kappa}$.
There is some uniform $B \in[A]^{\kappa}$ (by the Δ-system lemma).

Claim

B is uf-linked.
Fix an uf D and let $\bar{p}=\left\langle p_{n}: n<\omega\right\rangle$. Since \bar{p} is uniform, \mathbb{P} forces that $\left\{n<\omega: p_{n} \in \dot{G}\right\} \in D^{*}$ for some uf $D^{*} \supseteq D$, so $\left\{n<\omega: p_{n} \in \dot{G}\right\} \in D^{+}$.

Proof of the theorem

Fix $A \in[\mathbb{P}]^{\kappa}$.
There is some uniform $B \in[A]^{\kappa}$ (by the Δ-system lemma).

Claim

B is uf-linked.
Fix an uf D and let $\bar{p}=\left\langle p_{n}: n<\omega\right\rangle$. Since \bar{p} is uniform, \mathbb{P} forces that $\left\{n<\omega: p_{n} \in \dot{G}\right\} \in D^{*}$ for some uf $D^{*} \supseteq D$, so $\left\{n<\omega: p_{n} \in \dot{G}\right\} \in D^{+}$.

Hence B is D-linked.

Another application

Theorem (Brendle \& Cardona \& M. 2018)

Let $\aleph_{1} \leq \mu_{1} \leq \mu_{2} \leq \mu_{3} \leq \mu_{4}$ be regular cardinals, $\mu_{4} \leq \mu_{5}=\mu_{5}^{<\mu_{2}}$. Then, there is a ccc poset forcing

The other left side

Theorem (Kellner \& Tǎnasie \& Shelah 2018arxiv-2019pub)
Let $\aleph_{1} \leq \mu_{1} \leq \mu_{2}=\mu_{2}^{<\mu_{2}}<\mu_{3} \leq \mu_{4}$ be regular cardinals, $\mu_{4}^{\aleph_{0}}<\mu_{5}=\mu_{5}^{<\mu_{4}}$, and $\left(\forall \nu<\mu_{3}\right) \nu^{\aleph_{0}}<\mu_{3}$. Then, there is a ccc poset forcing

Preservation of mad families

Fix $A \subseteq[\omega]^{\aleph_{0}}$.

Preservation of mad families

Fix $A \subseteq[\omega]^{\aleph_{0}}$. Define $\mathbf{R}_{\mathrm{md}}(A):=\left\langle[\omega]^{\aleph_{0}}, \omega^{\omega \times[A]^{<\aleph_{0}}}, R_{\mathrm{md}}\right\rangle$ by

$$
x R_{\mathrm{md}} h \text { iff }(\exists n)(\forall i \geq n)\left(\forall F \in[A]^{<\aleph_{0}}\right)[n, h(n, F)) \backslash \bigcup F \nsubseteq x
$$

Preservation of mad families

Fix $A \subseteq[\omega]^{\aleph_{0}}$. Define $\mathbf{R}_{\mathrm{md}}(A):=\left\langle[\omega]^{\aleph_{0}}, \omega^{\omega \times[A]^{<\aleph_{0}}}, R_{\mathrm{md}}\right\rangle$ by

$$
x R_{\mathrm{md}} h \text { iff }(\exists n)(\forall i \geq n)\left(\forall F \in[A]^{<\aleph_{0}}\right)[n, h(n, F)) \backslash \bigcup F \nsubseteq x
$$

Theorem (Brendle \& Fischer 2011)

If A is an $\mathbf{R}_{\mathrm{md}}(A)$-unbounded a.d. family, then A is mad.

Preservation of mad families

Fix $A \subseteq[\omega]^{\aleph_{0}}$. Define $\mathbf{R}_{\mathrm{md}}(A):=\left\langle[\omega]^{\aleph_{0}}, \omega^{\omega \times[A]^{<\aleph_{0}}}, R_{\mathrm{md}}\right\rangle$ by

$$
x R_{\mathrm{md}} h \text { iff }(\exists n)(\forall i \geq n)\left(\forall F \in[A]^{<\aleph_{0}}\right)[n, h(n, F)) \backslash \bigcup F \nsubseteq x
$$

Theorem (Brendle \& Fischer 2011)

If A is an $\mathbf{R}_{\mathrm{md}}(A)$-unbounded a.d. family, then A is mad.

Theorem (Brendle \& Cardona \& M. 2018)

If $\kappa \geq \aleph_{1}$ is regular, \mathbb{P} is κ-Fr-Knaster and A is $\kappa-\mathbf{R}_{\mathrm{md}}(A)-L C U$, then \mathbb{P} forces that A is still $\kappa-\mathbf{R}_{\mathrm{md}}(A)-L C U$.

