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Cardinal characteristics associated with an ideal

Let I be an ideal of subsets of X .

Additivity of I. add(I) = min{|F| : F ⊆ I, ⋃F /∈ I}.
Covering of I. cov(I) = min{|F| : F ⊆ I, ⋃F = X}.
Uniformity of I. non(I) = min{|Z | : Z ⊆ X , Z /∈ I}.
Cofinality of I. cof(I) = min{|F| : F ⊆ I, (∀A ∈ I)(∃B ∈ F)A ⊆ B.

M: the ideal of first category subsets of R.

N : the ideal of Lebesgue measure zero subsets of R.

Diego A. Mej́ıa (Shizuoka University) Preservation theorems Oaxaca 2019 2 / 45



Cardinal characteristics associated with an ideal

Let I be an ideal of subsets of X .

Additivity of I. add(I) = min{|F| : F ⊆ I, ⋃F /∈ I}.

Covering of I. cov(I) = min{|F| : F ⊆ I, ⋃F = X}.
Uniformity of I. non(I) = min{|Z | : Z ⊆ X , Z /∈ I}.
Cofinality of I. cof(I) = min{|F| : F ⊆ I, (∀A ∈ I)(∃B ∈ F)A ⊆ B.

M: the ideal of first category subsets of R.

N : the ideal of Lebesgue measure zero subsets of R.

Diego A. Mej́ıa (Shizuoka University) Preservation theorems Oaxaca 2019 2 / 45



Cardinal characteristics associated with an ideal

Let I be an ideal of subsets of X .

Additivity of I. add(I) = min{|F| : F ⊆ I, ⋃F /∈ I}.
Covering of I. cov(I) = min{|F| : F ⊆ I, ⋃F = X}.

Uniformity of I. non(I) = min{|Z | : Z ⊆ X , Z /∈ I}.
Cofinality of I. cof(I) = min{|F| : F ⊆ I, (∀A ∈ I)(∃B ∈ F)A ⊆ B.

M: the ideal of first category subsets of R.

N : the ideal of Lebesgue measure zero subsets of R.

Diego A. Mej́ıa (Shizuoka University) Preservation theorems Oaxaca 2019 2 / 45



Cardinal characteristics associated with an ideal

Let I be an ideal of subsets of X .

Additivity of I. add(I) = min{|F| : F ⊆ I, ⋃F /∈ I}.
Covering of I. cov(I) = min{|F| : F ⊆ I, ⋃F = X}.
Uniformity of I. non(I) = min{|Z | : Z ⊆ X , Z /∈ I}.

Cofinality of I. cof(I) = min{|F| : F ⊆ I, (∀A ∈ I)(∃B ∈ F)A ⊆ B.

M: the ideal of first category subsets of R.

N : the ideal of Lebesgue measure zero subsets of R.

Diego A. Mej́ıa (Shizuoka University) Preservation theorems Oaxaca 2019 2 / 45



Cardinal characteristics associated with an ideal

Let I be an ideal of subsets of X .

Additivity of I. add(I) = min{|F| : F ⊆ I, ⋃F /∈ I}.
Covering of I. cov(I) = min{|F| : F ⊆ I, ⋃F = X}.
Uniformity of I. non(I) = min{|Z | : Z ⊆ X , Z /∈ I}.
Cofinality of I. cof(I) = min{|F| : F ⊆ I, (∀A ∈ I)(∃B ∈ F)A ⊆ B.

M: the ideal of first category subsets of R.

N : the ideal of Lebesgue measure zero subsets of R.

Diego A. Mej́ıa (Shizuoka University) Preservation theorems Oaxaca 2019 2 / 45



Cardinal characteristics associated with an ideal

Let I be an ideal of subsets of X .

Additivity of I. add(I) = min{|F| : F ⊆ I, ⋃F /∈ I}.
Covering of I. cov(I) = min{|F| : F ⊆ I, ⋃F = X}.
Uniformity of I. non(I) = min{|Z | : Z ⊆ X , Z /∈ I}.
Cofinality of I. cof(I) = min{|F| : F ⊆ I, (∀A ∈ I)(∃B ∈ F)A ⊆ B.

M: the ideal of first category subsets of R.

N : the ideal of Lebesgue measure zero subsets of R.

Diego A. Mej́ıa (Shizuoka University) Preservation theorems Oaxaca 2019 2 / 45



Some cardinal characteristics

For f , g ∈ ωω denote

f ≤∗ g (f is dominated by g) iff (∃m)(∀n ≥ m) f (n) ≤ g(n).

Consider

b = min{|F | : F ⊆ ωω and ¬(∃g ∈ ωω)(∀f ∈ F ) f≤∗g}
d = min{|D| : D ⊆ ωω and (∀f ∈ ωω)(∃g ∈ D) f≤∗g}
c = 2ℵ0
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Cichoń’s diagram

Inequalities: Bartoszyński, Fremlin, Miller, Rothberger, Truss.
Completeness: Bartoszyński, Judah, Miller, Shelah.

b b b b b

b b

b b b b b

ℵ1
add(N ) add(M) cov(M) non(N )

b d

cov(N ) non(M) cof(M) cof(N )
c

Also add(M) = min{b, cov(M)} and cof(M) = max{d, non(M)}.
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Objective

Techniques to obtain models where many cardinal characteristics assume
pairwise different values.

Context

Finite support iteration of ccc posets (non(M) ≤ cf(length) ≤ cov(M)).

Playground

Cichoń’s diagram (just the left side).
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General framework

Relational system

A relational system is a triplet R = 〈X ,Y ,R〉 where R ⊆ X × Y .

1 B ⊆ X is R-bounded if (∃y ∈ Y )(∀x ∈ B) xRy .

2 D ⊆ Y is R-dominating if (∀x ∈ X )(∃y ∈ D) xRy .

3 b(R) := min{|F | : F ⊆ X is R-unbounded}.
4 d(R) := min{|D| : D ⊆ Y is R-dominating}.
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Examples

1 Let 〈S ,≤〉 be a directed set.

As a relational system,
S = 〈S ,S ,≤〉, cp(S) := b(S), cf(S) = d(S).

Recall: If S has no maximum then cp(S) is regular and
cp(S) ≤ cf(S).

2 If L is a linear order without maximum then cp(L) = cf(L).

3 〈ωω,≤∗〉 is directed, b = b(ωω), d = d(ωω).

4 Id := 〈ωω, ωω,=〉, b(Id) = 2, d(Id) = c.

Fix an ideal I on a set X .

5 〈I,⊆〉 is directed, b(I) = add(I), d(I) = cof(I).

6 CI := 〈X , I,∈〉, b(CI) = non(I), d(CI) = cov(I).
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Dual and Tukey connections

If R = 〈X ,Y ,R〉, denote R⊥ = 〈Y ,X ,R⊥〉 where

yR⊥x iff ¬(xRy).

Note that b(R⊥) = d(R) and d(R⊥) = b(R).

Let R′ = 〈X ′,Y ′,R ′〉. A pair (F ,G ) : R→ R′ is a Tukey connection if

F : X → X ′, G : Y ′ → Y , (∀x ∈ X )(∀y ′ ∈ Y ′)F (x)R ′y ′ ⇒ xRG (y).

Denote

R�TR′ if ∃(F ,G ) : R→ R′.

R∼=TR′ if R �T R′ and R′ �T R.

1 R �T R′ implies b(R′) ≤ b(R) and d(R) ≤ d(R′).

2 R ∼=T R′ implies b(R) = b(R′) and d(R) = d(R′)
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Example

For h ∈ ωω let Lc(h) = 〈ωω,
(
[ω]<ℵ0

)ω
,∈∗h〉 where

x∈∗hϕ iff (∀i) |ϕ(i)|≤ h(i), and

(∃m)(∀i ≥ m) x(i) ∈ ϕ(i).

Bartoszyński (1984)

If h→∞ then N ∼=T Lc(h). Hence b(Lc(h)) = add(N ) and
d(Lc(h)) = cof(N ).
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Example of 3 values

Theorem (Brendle 1991)

If κ ≥ ℵ1 is regular and λ = λ<κ, then it is consistent with ZFC that

b b b b b

b b

b b b b b

κ λ

ℵ1
add(N ) add(M) cov(M) non(N )

b d

cov(N ) non(M) cof(M) cof(N )
c
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Localization forcing

Define the poset LOC:

Conditions. ϕ : ω → [ω]<ℵ0 such that (∀i) |ϕ(i)|≤ i , and
(∃m)(∀i ≥ m) |ϕ(i)|≤ m.

Order. ϕ ≤ ψ iff (∀i)ϕ(i) ⊆ ψ(i).

1 LOC is σ-linked (thus ccc).

2 It adds a slalom ϕ∗ such that (∀x ∈ ωω ∩ V ) x∈∗idϕ∗ (so it increases
add(N )).

3 If N ⊆ V is a transitive model (of ZFC) then LOCN is still σ-linked.

Diego A. Mej́ıa (Shizuoka University) Preservation theorems Oaxaca 2019 11 / 45



Localization forcing

Define the poset LOC:

Conditions. ϕ : ω → [ω]<ℵ0 such that (∀i) |ϕ(i)|≤ i , and
(∃m)(∀i ≥ m) |ϕ(i)|≤ m.

Order. ϕ ≤ ψ iff (∀i)ϕ(i) ⊆ ψ(i).

1 LOC is σ-linked (thus ccc).

2 It adds a slalom ϕ∗ such that (∀x ∈ ωω ∩ V ) x∈∗idϕ∗ (so it increases
add(N )).

3 If N ⊆ V is a transitive model (of ZFC) then LOCN is still σ-linked.

Diego A. Mej́ıa (Shizuoka University) Preservation theorems Oaxaca 2019 11 / 45



Localization forcing

Define the poset LOC:

Conditions. ϕ : ω → [ω]<ℵ0 such that (∀i) |ϕ(i)|≤ i , and
(∃m)(∀i ≥ m) |ϕ(i)|≤ m.

Order. ϕ ≤ ψ iff (∀i)ϕ(i) ⊆ ψ(i).

1 LOC is σ-linked (thus ccc).

2 It adds a slalom ϕ∗ such that (∀x ∈ ωω ∩ V ) x∈∗idϕ∗ (so it increases
add(N )).

3 If N ⊆ V is a transitive model (of ZFC) then LOCN is still σ-linked.

Diego A. Mej́ıa (Shizuoka University) Preservation theorems Oaxaca 2019 11 / 45



Localization forcing

Define the poset LOC:

Conditions. ϕ : ω → [ω]<ℵ0 such that (∀i) |ϕ(i)|≤ i , and
(∃m)(∀i ≥ m) |ϕ(i)|≤ m.

Order. ϕ ≤ ψ iff (∀i)ϕ(i) ⊆ ψ(i).

1 LOC is σ-linked (thus ccc).

2 It adds a slalom ϕ∗ such that (∀x ∈ ωω ∩ V ) x∈∗idϕ∗ (so it increases
add(N )).

3 If N ⊆ V is a transitive model (of ZFC) then LOCN is still σ-linked.

Diego A. Mej́ıa (Shizuoka University) Preservation theorems Oaxaca 2019 11 / 45



Localization forcing

Define the poset LOC:

Conditions. ϕ : ω → [ω]<ℵ0 such that (∀i) |ϕ(i)|≤ i , and
(∃m)(∀i ≥ m) |ϕ(i)|≤ m.

Order. ϕ ≤ ψ iff (∀i)ϕ(i) ⊆ ψ(i).

1 LOC is σ-linked (thus ccc).

2 It adds a slalom ϕ∗ such that (∀x ∈ ωω ∩ V ) x∈∗idϕ∗ (so it increases
add(N )).

3 If N ⊆ V is a transitive model (of ZFC) then LOCN is still σ-linked.

Diego A. Mej́ıa (Shizuoka University) Preservation theorems Oaxaca 2019 11 / 45



Proof 1 (half)

Perform a FS iteration of length λ using

LOCNξ for some transitive model Nξ of size <κ.

b b b b b b bV = V0
Vξ

LOCNξ

Vξ+1 Vξ+2

LOCNξ+1

Vξ+3

LOCNξ+2

Vη Vλ

Book-keeping argument: Any P-name Ż ⊆ ωω, |Ż | < κ is contained in
some Nξ (ξ < λ) (OK because λ<κ = λ).

In Vλ, for any ξ < λ let ϕξ be the slalom added by LOCNξ .

1 (∀x ∈ ωω ∩ Nξ) x ∈∗id ϕξ.
2 For any Z ⊆ ωω of size <κ, there is some ξ < λ such that

(∀x ∈ Z ) x ∈∗id ϕξ.

Hence κ ≤ add(N ). On the other hand, c ≤ λ.
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some Nξ (ξ < λ) (OK because λ<κ = λ).

In Vλ, for any ξ < λ let ϕξ be the slalom added by LOCNξ .

1 (∀x ∈ ωω ∩ Nξ) x ∈∗id ϕξ.
2 For any Z ⊆ ωω of size <κ, there is some ξ < λ such that

(∀x ∈ Z ) x ∈∗id ϕξ.

Hence κ ≤ add(N ). On the other hand, c ≤ λ.

Diego A. Mej́ıa (Shizuoka University) Preservation theorems Oaxaca 2019 12 / 45



Proof 1 (half)

Perform a FS iteration of length λ using

LOCNξ for some transitive model Nξ of size <κ.

b b b b b b bV = V0
Vξ

LOCNξ

Vξ+1 Vξ+2

LOCNξ+1

Vξ+3

LOCNξ+2

Vη Vλ

Book-keeping argument: Any P-name Ż ⊆ ωω, |Ż | < κ is contained in
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Special dominating families 1

It remains non(M) ≤ κ and λ ≤ cov(M) . . .

Later

θ-R-DOM

Let R = 〈X ,Y ,R〉. Say that D ⊆ Y is θ-R-DOM if, for any B ⊆ X of size
<θ there is some y ∈ D such that (∀x ∈ B) xRy .

For example, {ϕξ : ξ < λ} is κ-Lc(id)-DOM.

Lemma

If ∃D ⊆ Y θ-R-DOM, then θ ≤ b(R) and d(R) ≤ |D|.

Also useful for θ-R⊥-DOM.
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Special dominating families 2

Fix a directed order S = 〈S ,≤〉.

Definition (cf. Goldstern & Kellner & Shelah, 2017arxiv–2019pub)

Say that {yi : i ∈ S} ⊆ Y is S-R-COB if

(∀x ∈ X )(∃ix ∈ S)(∀i ≥ ix) xRyi .

x 7→ ix and i 7→ yi is a Tukey connection for R �T S .

Fact

(∃ S-R-COB set) iff R �T S , and each implies cp(S) ≤ b(R) and
d(R) ≤ cf(S).
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Special dominating families 2 (cont.)

Notation

Say that R = 〈X ,Y ,R〉 is Borel if X ,Y are Polish spaces and R is Borel.

Fix a poset P and a Borel R.

Definition (Goldstern & Kellner & Shelah, 2017–2019)

COBR(P, S) means that there is some {ẏi : i ∈ S} ⊆ Y s.t.

(∀ẋ ∈ X )(∃iẋ ∈ S)(∀i ≥ ix) P ẋRẏi .

1 COBR(P,S) implies P R �T S .

2 COBR(P,S) implies P“cp(S)V ≤ b(R) and d(R) ≤ cf(S)V ”.

3 If P is cp(S)V -cc then P cp(S) = cp(S)V .

4 If P is cp(S)V -cc then COBR(P, S) iff P R �T S .
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Proof 2 (half)

b b b b b b bV = V0
Vξ

LOCNξ

Vξ+1 Vξ+2

LOCNξ+1

Vξ+3

LOCNξ+2

Vη Vλ

Modified book-keeping. For α < κ, A ⊆ λ in V and a Pλ-name ẋ ∈ ωω, if
|A| < κ then, for some η < λ, ẋ ∈ Ṅη and (∀ξ ∈ A) ξ < η, Ṅξ ⊆ Ṅη.

S := λ ordered by ξ ≤S η iff ξ ≤ η and  Ṅξ ⊆ Ṅη.

1 κ ≤ cp(S) ≤ cf(S) ≤ |S | = λ.

2 {ϕξ : ξ < λ} is S-Lc(id)-COB.

3 COBLc(id)(P,S) holds. So P forces κ ≤ add(N ) and cof(N ) ≤ λ.
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Proof 2 (half)
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Cohen reals

There is an Fσ relation R4 ⊆ 2ω such that R4 := 〈2ω, 2ω,R4〉 ∼=T CM.
Hence b(R4) = non(M) and d(R) = cov(M)

Fact

If c ∈ 2ω is Cohen over V then ¬(cR4y) for any y ∈ 2ω ∩ V .

Let θ ≥ ℵ1 be regular, P resulting from a FS it. of ccc posets of length θ.

1 It adds a set of Cohen reals C := {cξ : ξ < θ}.
2 (∀y ∈ 2ω ∩ Vθ)(∃ξ0 < θ)(∀ξ ≥ ξ0)¬(cξR4y).

3 P forces that C is θ-R⊥4 -COB.

4 P forces b(R4) ≤ cf(θ) = θ ≤ d(R4).
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Special unbounded families

Fix a Borel R = 〈X ,Y ,R〉.

Definition

Let L be a linear order.

1 F ⊆ X is L-R-LCU if it is L-R⊥-COB.

2 LCUR(P, L) means COBR⊥(P, L).

1 LCUR(P, L) implies P R⊥ �T L.

2 LCUR(P, L) implies P“b(R) ≤ cf(L)V ≤ d(R)”.

3 If P is cf(L)V -cc then P cf(L) = cf(L)V .

4 If P is cf(L)V -cc then LCUR(P, L) iff P R⊥ �T L.
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Proof 1 & 2 (cont.)

b b b b b b bV = V0
Vξ

LOCNξ

Vξ+1 Vξ+2

LOCNξ+1

Vξ+3

LOCNξ+2

Vη Vλ

Main Claim

For any regular κ ≤ θ ≤ λ, the θ-R4-LCU set of Cohen reals added by Pθ
is preserved in Vλ. I.e., LCU(P, θ) holds.

For such θ, R⊥4 �T θ, so non(M) ≤ θ ≤ cov(M).

Hence non(M) ≤ κ and λ ≤ cov(M).
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Preservation theory 1

Fix a Borel R and θ ≥ ℵ1 regular.

Definition (Judah & Shelah 1990, and Brendle 1991)

A poset P is θ-R-good if (∀ẏ ∈ Y )(∃H ⊆ Y ):

0 < |H| < θ and (∀x ∈ X )
[(

(∀z ∈ H)¬(xRz)
)
⇒ P ¬(xRẏ)

]

Fact

If P is θ-cc and θ-R-good then it preserves

(i) θ-R⊥-DOM sets,

(ii) S-R⊥-COB sets whenever cp(S) ≥ θ,

(iii) L-R-LCU sets whenever cf(L) ≥ θ.

1 If P is θ-R-good and θ ≤ θ′ then P is θ′-R-good.

2 If P is θ-R-good and P0lP then P0 is.
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Preservation theory 1 (cont.)

Definition

Say that R = 〈X ,Y ,R〉 is Polish if

1 X is perfect Polish, Y is Polish,

2 R =
⋃

i<ω Ri where each Ri is closed,

3 (∀y ∈ Y ) {x ∈ X : xRiy} is nwd.

This implies CM �T R, so b(R) ≤ non(M) and cov(M) ≤ d(R).

Fix a Polish R and an uncountable regular κ.

Theorem

Any FS iteration of κ-cc κ-R-good posets is again κ-R-good.

Corollary

If P is a FS iteration of κ-cc κ-R-good posets then LCUR(P, θ) holds for
any regular κ ≤ θ ≤ length.
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Examples

Fact

For any Polish R and θ ≥ ℵ1 regular, if |P| < θ then P is θ-R-good.

Since R4 is Polish,

b b b b b b bV = V0
Vξ

LOCNξ

Vξ+1 Vξ+2

LOCNξ+1

Vξ+3

LOCNξ+2

Vη Vλ

is κ-R4-good. This proves the Main Claim before.
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Examples

1 R3 := ωω is Polish.

2 There is a Polish R2
∼=T C⊥N (b(R2) = cov(N ), d(R2) = non(N )).

(Brendle 1991) Any θ-centered poset is θ+-R2-good.

3 R1 := 〈ωω,
(
[ω]<ℵ0

)ω
,∈∗H〉 where H = {idk+1 : k < ω} and

x∈∗Hϕ iff (∃h ∈ H)(∀i) |ϕ(i)|≤ h(i), and

(∃m)(∀i ≥ m) x(i) ∈ ϕ(i).

Indeed b(R1) = add(N ) and d(R1) = cof(N ). (In fact
(∀h ∈ H) Lc(H) �T Lc(h))

(Judah & Shelah 1990) Any θ-centered poset is θ+-R1-good.

(Kamburelis 1989) Any subalgebra of random forcing is ℵ1-R1-good.
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(∃m)(∀i ≥ m) x(i) ∈ ϕ(i).

Indeed b(R1) = add(N ) and d(R1) = cof(N ). (In fact
(∀h ∈ H) Lc(H) �T Lc(h))

(Judah & Shelah 1990) Any θ-centered poset is θ+-R1-good.

(Kamburelis 1989) Any subalgebra of random forcing is ℵ1-R1-good.
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Examples

Let Rrp := 〈[ω]ℵ0 , [ω]ℵ0 ,Rrp〉 where

xRrpy iff x ⊇∗ y or ω r x ⊇∗ y (x does not split y)

Rrp is Polish, b(Rrp) = s and d(Rrp) = r.

Baumgartner & Dordal 1985

Hechler forcing is ℵ1-Rrp-good.

Dow & Shelah 2018

If F is a filter on ω generated by <θ many sets then LF is θ-Rrp-good.
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Left side (6 values)

Theorem (Goldstern & M. & Shelah 2016)

Let µ1 ≤ µ2 ≤ µ3 = µℵ0
3 ≤ µ4 = µℵ0

4 be uncountable regular cardinals,
µ4 < µ5 = µ<µ4

5 ≤ 2µ3 . Then, there is a ccc poset forcing

b b b b b

b b

b b b b b

µ1

µ2

µ3

µ4 µ5

ℵ1
b(R1) d(R4) d(R2)

b(R3) d(R3)

b(R2) b(R4) d(R1)
c

(Goldstern & Kellner & Shelah 2017–2019) Can obtain such a ccc poset
under GCH.
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Natural attempt

Construct a FS it. of length µ5 alternating:

1 LOCN with |N| < µ1,

2 (random)N with |N| < µ2,

3 (Hechler)N with |N| < µ3,

4 EN with |N| < µ4 (σ-centered poset to increase b(R4))

via book-keeping to get, for i = 1, 2, 3, 4,

COBRi
(P,Si ) with µi ≤ cp(Si ) ≤ cf(Si ) ≤ |Si | = µ5.

Hence µi ≤ b(Ri ) and d(Ri ) ≤ µ5 (actually c ≤ µ5).
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Natural attempt (cont.)

Construct a FS it. of length µ5 alternating:

1 LOCN with |N| < µ1,

2 (random)N with |N| < µ2,

3 (Hechler)N with |N| < µ3,

4 EN with |N| < µ4 (σ-centered poset to increase b(R4))

The iterands are, for i = 1, 2, 4,

µi -Ri -good, so LCURi
(P, θ) for any regular µi ≤ θ ≤ µ5.

Hence b(Ri ) ≤ µi and µ5 ≤ d(Ri ).
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Natural attempt (cont.)

Iterands except EN are µ3-R3-good.

Theorem (Miller 1981)

E is ℵ1-R3-good.

However

Theorem (Pawlikowski 1992)

There is a proper ωω-bounding poset forcing that EV adds a dominating
real.
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Filter-linkedness

Definition (M. 2018arxiv–2019pub)

Let P be a poset and F a (free) filter on ω.

(1) A set Q ⊆ P is F -linked if, for any sequence p̄ = 〈pn : n < ω〉 in Q,
there is some q ∈ P forcing that {n < ω : pn ∈ Ġ} ∈ F+.

(2) A set Q ⊆ P is ultrafilter-linked (uf-linked) if it is F -linked for any
(ultra)filter F .

(3) P is µ-F -linked if P =
⋃
α<µQα with Qα F -linked in P.

(4) P is θ-F -Knaster if (∀A ∈ [P]θ)(∃Q ∈ [A]θ)Q is F -linked in P.

(5) The notions µ-uf-linked and θ-uf-Knaster are defined similarly.

Fr := {x ⊆ ω : |ω r x | < ℵ0} denotes the Frechet filter.

Lemma (M. 2018–2019)

If P is ccc then Q ⊆ P is uf-linked iff it is Fr-linked.
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Filter-linkedness (cont.)

For x , y ∈ ωω denote x ≤n y iff (∀i ≥ n) x(i) ≤ y(i).

Lemma

If Q ⊆ P is Fr-linked and ẏ ∈ ωω then

(∃y ∈ ωω)(∀x ∈ ωω)(∀n < ω) x �n y ⇒ (∀p ∈ Q) p 1 x ≤n ẏ .

Theorem

(M. 2018–2019) Any µ-Fr-linked poset is µ+-R3-good.

(Brendle & Cardona & M. 2018arxiv) For θ ≥ ℵ1 regular, any
θ-Fr-Knaster poset preserves θ-R3-LCU sets.

GMS and GKS posets for the left side of Cichoń’s diagram are
θ-Fr-Knaster for any regular µ3 ≤ θ ≤ µ5. In particular LCUR3(P, θ)
holds.
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Eventually different real forcing

Definition

The poset E is defined as follows.

Conditions: (s, ϕ) where s ∈ ω<ω and ϕ : ω → [ω]<ℵ0 such that
(∃m < ω)(∀i < ω) |ϕ(i)| ≤ m.

Order: (s ′, ϕ′) ≤ (s, ϕ) iff s ⊆ s ′, (∀i)ϕ(i) ⊆ ϕ′(i) and s ′(i) /∈ ϕ(i)
for all i ∈ |s ′|r |s|.

Clearly E is σ-centered and the generic real e :=
⋃{s : ∃ϕ((s, ϕ) ∈ G )} is

eventually different over the ground model (so it increases non(M)).
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Examples of µ-uf-linked posets

Lemma (ess. Miller 1981)

E(t,m) := {(s, ϕ) ∈ E : s = t, (∀i) |ϕ(i)| ≤ m} is uf-linked.
Hence E is σ-uf-linked.

Lemma

Any complete Boolean algebra with a strictly-positive countable-additive
measure is σ-Fr-linked.
(b/c the set

{
b ∈ B : meas(b) ≥ 1

n

}
is Fr-linked)

Lemma

If |P| ≤ µ then P is µ-uf-linked.
(b/c singletons are uf-linked)
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Left side (7 values)

Theorem (Brendle & Cardona & M. 2018)

Let ℵ1 ≤ µ1 ≤ µ2 ≤ µ3 ≤ µ4 ≤ µ5 be regular and µ5 ≤ µ6 = µ<µ3
6 . Then,

there is a ccc poset forcing

b b b b b

b b

b b b b b

µ1

µ2

µ3

µ4

µ5

µ6

ℵ1
b(R1) d(R4) d(R2)

b(R3) d(R3)

b(R2) b(R4) d(R1)
c
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Simple matrix iterations

A simple matrix iteration is
composed by

1 a height γ and a length π,

2 ∆ : π r {0} → γ r Lim,

3 for α ≤ γ a FS it.
〈Pα,ξ, Q̇α,ξ : ξ < π〉 such that:

4 Pα,1 = Q̇α,0 = Cα (α-many
Cohen reals),

5 for 1 ≤ ξ < π there is a
Q̇∗ξ ∈ V∆(ξ),ξ such that

Q̇α,ξ =

{
Q̇∗ξ if α ≥ ∆(ξ),

{0} if α < ∆(ξ).

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

V0,1

V1,1

Vα,1

C

Vα+1,1

Vγ,1

V0,ξ

V1,ξ

Vα,ξ

Vα+1,ξ

Vγ,ξ

V0,ξ+1

V1,ξ+1

Vα,ξ+1

Vα+1,ξ+1

Vγ,ξ+1

Q̇0,ξ = {0}

Q̇1,ξ = {0}

Q̇α,ξ = {0}

Q̇∆(ξ),ξ = Q̇∗
ξ

Q̇γ,ξ = Q̇∗
ξ

V0,π

V1,π

Vα,π

Vα+1,π

Vγ,π
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Properties

Assume cf(γ) ≥ ω1 and Pγ,π is ccc.

Blass & Shelah 1989, Brendle & Fischer 2011
1 α ≤ β and ξ ≤ η implies Pα,ξ l Pβ,η.

2 If x ∈ R ∩ Vγ,ξ then x ∈ Vα,ξ for some α < γ.
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Preservation 2

Assume cf(γ) ≥ ω1, Pγ,π is ccc and R = 〈X ,Y ,R〉 is Polish.

Let cα ∈ X ∩ Vα+1,1 be the Cohen real over Vα,1 added by Pα+1,1.

Clearly (∀y ∈ Y ∩ Vα,1)¬(cαRy).

Brendle & Fischer 2011
1 (∀y ∈ Y ∩ Vα,π)¬(cαRy).

2 {cα : α < γ} is γ-R-LCU.

3 LCUR(Pγ,π, γ).
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Proof of the theorem

First force with Cµ6 , so LCURi (C, θ) for any regular ℵ1 ≤ θ ≤ µ6.

Afterwards

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

V0,1

V1,1

C

Vµ5,1

V0,µ6ρ

V1,µ6ρ

V∆(µ6ρ)−1,µ6ρ

V∆(µ6ρ),µ6ρ

Vµ5,µ6ρ

V0,µ6ρ+1

V1,µ6ρ+1

V∆(µ6ρ)−1,µ6ρ+1

V∆(µ6ρ),µ6ρ+1

Vµ5,µ6ρ+1

{0}

{0}

{0}

EV∆(µ6ρ),µ6ρ

EV∆(µ6ρ),µ6ρ

(ρ < µ5µ4)

Height µ5, length π := µ6µ5µ4,
S1 = LOC, S2 = random, S3 = Hechler, |Nξ| < µi (i=1,2,3)
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∆ and Nξ are constructed so that:

1 For i = 1, 2, 3, COBRi
(P,Si ) where µi ≤ cp(Si ) ≤ cf(Si ) ≤ |Si | = µ6,

so µi ≤ b(Ri ), d(Ri ) ≤ µ6.

2 S4 := {µ6ρ : 0 < ρ < µ5µ4}, ordered by µ6ρ ≤S4 µ6ρ
′ iff ρ ≤ ρ′ and

∆(µ6ρ) ≤ ∆(µ6ρ
′), satisfies µ4 ≤ cp(S4) ≤ cf(S4) ≤ |S4| = µ5.

3 For η ∈ S4 let eη ∈ ωω be the generic ev. diff. real over V∆(η),η.

Mη := {x ∈ ωω : x 6=∗ eη} ∈ M, {Mη : η ∈ S4} is S4-CM-COB,

so COBR4(P,S4) (b/c CM ∼=T R4), hence µ4 ≤ b(R4) and
d(R4) ≤ µ5.

On the other hand

4 For i = 1, 2 iterands are Ri -good, so LCURi
(P, θ) holds for regular

µi ≤ θ ≤ µ6,
Hence b(Ri ) ≤ µi and µ6 ≤ d(Ri ).

5 Since cf(π) = µ4, LCUR4(P, µ4) holds, so b(R4) ≤ µ4.

6 LCUR4(P, µ5) (by Preservation 2), so µ5 ≤ d(R4)
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Proof (cont.)

It remains to show b(R3) ≤ µ3 and µ6 ≤ d(R3).

Enough to show LCUR3(P, θ) for any regular µ3 ≤ θ ≤ µ6.

Recall we have LCUR3(Cµ6 , θ). Also

For any 0 < ξ < π, V∆(ξ),ξ |=“Q∗ξ is <µ3-uf-linked”.
(though it may not be true in Vµ5,ξ)

We are done if we show that the matrix is µ3-uf-Knaster.
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κ-uf-Knaster matrices

Theorem (Brendle & Cardona & M. 2018)

Let κ ≥ ℵ1 be regular. If P is a simple matrix iteration such that
V∆(ξ),ξ |=“Q∗ξ is <κ-uf-linked” for any 0 < ξ < π, then P is κ-uf-Knaster.

µ-Fr-linked ⇒ µ-Fin-cc (union of µ-many Fin-cc subsets)

(Q ⊆ Q is Fin-cc if (∀A ⊆ Q) (A antichain in P ⇒ |A| < ℵ0))

So Vγ,ξ |=“Q∗ξ is < κ-Fin-cc”, hence κ-cc. Thus P is κ-cc.

For each 0 < ξ < π there is some cardinal θξ < κ and P∆(ξ),ξ-names

〈Q̇ξ,ζ : ζ < θξ〉 of uf-linked subsets of Q̇∗ s.t. Q̇∗ξ =
⋃
ζ<θξ

Q̇ξ,ζ .
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Main Lemma

Wlog p ∈ P iff (∀ξ ∈ suppp) p(ξ) ∈ Q̇ξ is a P∆(ξ),ξ-name, and there is

some fp ∈
∏
ξ∈suppp θξ s.t. ∆(ξ),ξ p(ξ) ∈ Q̇ξ,fp(ξ).

Say that B ⊆ P is uniform if

1 {domp : p ∈ B} forms a ∆-system with root r∗.

2 (∃f ∗ ∈∏ξ∈r∗ θξ)(∀p, p′ ∈ B) fp�r∗ = f ∗.

Main Lemma

If D is a non-principal ultrafilter on ω and 〈pn : n < ω〉 ⊆ P is uniform,
then, in VP, there is some ultrafilter D∗ ⊇ D such that
{n < ω : pn ∈ GP} ∈ D∗.
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Proof of the theorem

Fix A ∈ [P]κ.

There is some uniform B ∈ [A]κ (by the ∆-system lemma).

Claim

B is uf-linked.

Fix an uf D and let p̄ = 〈pn : n < ω〉. Since p̄ is uniform,

P forces that {n < ω : pn ∈ Ġ} ∈ D∗ for some uf D∗ ⊇ D,

so {n < ω : pn ∈ Ġ} ∈ D+.

Hence B is D-linked.
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Another application

Theorem (Brendle & Cardona & M. 2018)

Let ℵ1 ≤ µ1 ≤ µ2 ≤ µ3 ≤ µ4 be regular cardinals, µ4 ≤ µ5 = µ<µ2
5 . Then,

there is a ccc poset forcing

b b b b b

b b

b b b b b

µ1 µ2

µ3

µ4

µ5

ℵ1
add(N ) add(M) cov(M) non(N )

b d

cov(N ) non(M) cof(M) cof(N )
c

Diego A. Mej́ıa (Shizuoka University) Preservation theorems Oaxaca 2019 43 / 45



The other left side

Theorem (Kellner & Tǎnasie & Shelah 2018arxiv–2019pub)

Let ℵ1 ≤ µ1 ≤ µ2 = µ<µ2
2 < µ3 ≤ µ4 be regular cardinals,

µℵ0
4 < µ5 = µ<µ4

5 , and (∀ν < µ3) νℵ0 < µ3. Then, there is a ccc poset
forcing

b b b b b

b b

b b b b b

µ1 µ2

µ3 µ4 µ5

ℵ1
add(N ) add(M) cov(M) non(N )

b d

cov(N ) non(M) cof(M) cof(N )
c
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Preservation of mad families

Fix A ⊆ [ω]ℵ0 .

Define Rmd(A) := 〈[ω]ℵ0 , ωω×[A]<ℵ0 ,Rmd〉 by

xRmdh iff (∃n)(∀i ≥ n)(∀F ∈ [A]<ℵ0) [n, h(n,F ))r
⋃

F * x

Theorem (Brendle & Fischer 2011)

If A is an Rmd(A)-unbounded a.d. family, then A is mad.

Theorem (Brendle & Cardona & M. 2018)

If κ ≥ ℵ1 is regular, P is κ-Fr-Knaster and A is κ-Rmd(A)-LCU, then P
forces that A is still κ-Rmd(A)-LCU.
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